Polarisation analysis of luminescence for the characterisation of defects in silicon wafer solar cells

被引:8
作者
Peloso, Matthew P. [1 ]
Lew, Jen Sern [1 ]
Chaturvedi, Pooja [1 ]
Hoex, Bram [1 ]
Aberle, Armin G. [1 ]
机构
[1] Natl Univ Singapore, Solar Energy Res Inst Singapore, Singapore 117574, Singapore
来源
PROGRESS IN PHOTOVOLTAICS | 2012年 / 20卷 / 06期
基金
新加坡国家研究基金会;
关键词
solar cell; luminescence; dislocation; polarisation; defect; silicon; PHOTOLUMINESCENCE POLARIZATION; ELECTROLUMINESCENCE; DISLOCATIONS;
D O I
10.1002/pip.1201
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photoluminescence and electroluminescence imaging has progressed significantly in recent years and is now routinely used to extract spatially resolved characteristics of silicon wafer solar cells and other electronic devices. In this paper, we report on the expansion of the luminescence imaging technique by the application of spatially resolved polarisation analysis. Luminescence imaging of silicon wafer solar cells is extended to yield the partial polarisation of luminescence. It is hypothesised, and then shown experimentally, that certain defects in silicon wafer solar cells generate strongly polarised electroluminescence. In particular, extended crystalline defects in silicon wafers are shown to exhibit a partial polarisation of electroluminescence as high as 60%. The linear polarisation is found to be oriented to the dislocations in the multicrystalline silicon wafer solar cells. The luminescence polarisation effect is discussed in relation to internal charge anisotropy of defects in silicon wafer solar cells. These results may be used to advance the characterisation of solar cells, to understand the electrical properties of defects in silicon wafer solar cells, to study the formation of defects during crystal growth, or to probe the Bloch band anisotropy at regions of a high dislocation density. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:661 / 669
页数:9
相关论文
共 33 条
[1]   Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells [J].
Abbott, M. D. ;
Cotter, J. E. ;
Chen, F. W. ;
Trupke, T. ;
Bardos, R. A. ;
Fisher, K. C. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
[2]   Luminescence polarization of silicon nanocrystals [J].
Allan, G ;
Delerue, C ;
Niquet, YM .
PHYSICAL REVIEW B, 2001, 63 (20)
[3]  
ANDRIANOV AV, 1993, JETP LETT+, V58, P427
[4]   Photoluminescence polarization of semiconductor nanocrystals [J].
Chamarro, M ;
Gourdon, C ;
Lavallard, P .
JOURNAL OF LUMINESCENCE, 1996, 70 :222-237
[5]  
Feofilov P.P., 1961, The physical basis of polarized emission
[6]  
FEOFILOV PP, 1959, POLARIZED LUMINESCEN
[7]   VERIFICATION OF A GENERALIZED PLANCK LAW BY INVESTIGATION OF THE EMISSION FROM GAAS LUMINESCENT DIODES [J].
FEUERBACHER, B ;
WURFEL, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (16) :3803-3810
[8]   Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence [J].
Fuyuki, T ;
Kondo, H ;
Yamazaki, T ;
Takahashi, Y ;
Uraoka, Y .
APPLIED PHYSICS LETTERS, 2005, 86 (26) :1-3
[9]  
Galanin M. D., 1997, LUMINESCENCE MOL CRY
[10]   POLARIZED ELECTROLUMINESCENCE FROM RUBBING-ALIGNED POLY(2,5-DINONYLOXY-1,4-PHENYLENEVINYLENE) FILMS [J].
HAMAGUCHI, M ;
YOSHINO, K .
APPLIED PHYSICS LETTERS, 1995, 67 (23) :3381-3383