Stochastic Liouville equation for particles driven by dichotomous environmental noise

被引:11
作者
Bressloff, Paul C. [1 ]
机构
[1] Univ Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
DIFFUSION; DYNAMICS;
D O I
10.1103/PhysRevE.95.012124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the stochastic dynamics of a large population of noninteracting particles driven by a global environmental input in the form of a dichotomous Markov noise process (DMNP). The population density of particle states evolves according to a stochastic Liouville equation with respect to different realizations of the DMNP. We then exploit the connection with previous work on diffusion in randomly switching environments, in order to derive moment equations for the distribution of solutions to the stochastic Liouville equation. We illustrate the theory by considering two simple examples of dichotomous flows, a velocity jump process and a two-state gene regulatory network. In both cases we show how the global environmental input induces statistical correlations between different realizations of the population density.
引用
收藏
页数:10
相关论文
共 31 条
  • [21] NEUROTRANSMITTER CONCENTRATIONS IN THE PRESENCE OF NEURAL SWITCHING IN ONE DIMENSION
    Lawley, Sean D.
    Best, Janet A.
    Reed, Michael C.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (07): : 2255 - 2273
  • [22] STOCHASTIC SWITCHING IN INFINITE DIMENSIONS WITH APPLICATIONS TO RANDOM PARABOLIC PDE
    Lawley, Sean D.
    Mattingly, Jonathan C.
    Reed, Michael C.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) : 3035 - 3063
  • [23] A STOCHASTIC HYBRID FRAMEWORK FOR OBTAINING STATISTICS OF MANY RANDOM WALKERS IN A SWITCHING ENVIRONMENT
    Levien, Ethan
    Bressloff, Paul C.
    [J]. MULTISCALE MODELING & SIMULATION, 2016, 14 (04) : 1417 - 1433
  • [24] Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli
    Ly, Cheng
    Ermentrout, G. Bard
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2009, 26 (03) : 425 - 443
  • [25] Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators
    Nakao, Hiroya
    Arai, Kensuke
    Kawamura, Yoji
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (18)
  • [26] Mathematical Modelling of Bacterial Quorum Sensing: A Review
    Perez-Velazquez, Judith
    Goelgeli, Meltem
    Garcia-Contreras, Rodolfo
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (08) : 1585 - 1639
  • [27] Salsa S., 2009, Partial differential equations in action. from modeling to theory
  • [28] Gene expression dynamics in randomly varying environments
    Smiley, Michael W.
    Proulx, Stephen R.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (02) : 231 - 251
  • [29] Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators
    Teramae, J
    Tanaka, D
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (20) : 204103 - 1
  • [30] Phenotypic switching in gene regulatory networks
    Thomas, Philipp
    Popovic, Nikola
    Grima, Ramon
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (19) : 6994 - 6999