Optimal parallel selection in sorted matrices

被引:3
|
作者
Shen, H
Ramnath, S
机构
[1] ST CLOUD STATE UNIV,DEPT COMP SCI,ST CLOUD,MN 56301
[2] ABO AKAD UNIV,DEPT COMP SCI,TURKU,FINLAND
关键词
EREW PRAM; parallel algorithms; selection; sorted matrix; time complexity;
D O I
10.1016/0020-0190(96)00100-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallel algorithm running in time O(logmlog*m(loglogm + log(nlm))) time and O(mlog(nlm)) operations on an EREW PRAM for the problem of selection in an m x n matrix with sorted rows and columns, m less than or equal to n. Our algorithm generalizes the result of Samath and He (1992) for selection in a sorted matrix of equal dimensions, and thus answers the open question they posted. The algorithm is work-optimal thus improving upon the result in (Samath and He, 1992) for the case of square matrices as well. Our algorithm can be generalized to solve the selection problem on a set of sorted matrices of arbitrary dimensions.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [21] Parallel multisplitting methods with optimal weighting matrices for linear systems
    Wang, Chuan-Long
    Yan, Xi-Hong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 523 - 532
  • [22] AN OPTIMAL PARALLEL ALGORITHM FOR THE DOMATIC PARTITION PROBLEM ON AN INTERVAL GRAPH GIVEN ITS SORTED MODEL
    YU, MS
    YANG, CH
    INFORMATION PROCESSING LETTERS, 1992, 44 (01) : 15 - 22
  • [23] SORTING ROUGHLY SORTED SEQUENCES IN PARALLEL
    ALTMAN, T
    CHLEBUS, BS
    INFORMATION PROCESSING LETTERS, 1990, 33 (06) : 297 - 300
  • [24] Sorted kernel matrices as cluster validity indexes
    Queiroz, Francisco A. A.
    Braga, Antonio P.
    Pedrycz, Witold
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1490 - 1495
  • [26] OPTIMAL SELECTION OF WEIGHTING MATRICES IN INTEGRATED DESIGN OF STRUCTURES CONTROLS
    SUNAR, M
    RAO, SS
    AIAA JOURNAL, 1993, 31 (04) : 714 - 720
  • [27] PARALLEL PIVOT SELECTION AND ROW ORDERING FOR GIVENS REDUCTION OF SPARSE MATRICES
    DUATO, J
    GONZALEZ, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 170 : 176 - 181
  • [28] OPTIMAL STRATEGY FOR TEARING OF SPARSE MATRICES WHEN USING PARALLEL PROCESSORS
    KULICKE, B
    SCHEFTER, M
    ETZ ARCHIV, 1990, 12 (06): : 193 - 198
  • [29] A sorted Jacobi algorithm and its parallel implementation
    Xu, De-Chen
    Liu, Zhi-Wen
    Xu, You-Gen
    Cao, Jin-Liang
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2010, 30 (12): : 1470 - 1474
  • [30] PARALLEL MERGE MODULE FOR COMBINING SORTED LISTS
    LIU, GS
    CHEN, HH
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1989, 136 (03): : 161 - 165