Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay

被引:26
|
作者
Xu, Jian [1 ]
Yang, Gaoxiang [1 ]
Xi, Hongguang [2 ]
Su, Jianzhong [2 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76016 USA
基金
中国国家自然科学基金;
关键词
Predator-prey model; Spatiotemporal patterns; Turing instability; Spatiotemporal delay; TRAVELING-WAVES; SYSTEM; INSTABILITIES;
D O I
10.1007/s11071-015-2132-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Using the tool of Turing instability for partial differential equations, we investigate the spatiotemporal distributions for solutions of a predator-prey-type reaction-diffusion model with spatiotemporal delay. The linear stability conditions of Turing instability, which induce bifurcation patterns in this model, are obtained. Moreover, according to these conditions, we numerically calculate the bifurcation diagrams by using time delay and the predator rate as parameters. The effects of two parameters in the different bifurcation diagrams are also demonstrated through numerical computations and lead to some spatiotemporal patterns of this model, which enrich the pattern formation of predator-prey models.
引用
收藏
页码:2155 / 2163
页数:9
相关论文
共 50 条
  • [1] Pattern dynamics of a predator–prey reaction–diffusion model with spatiotemporal delay
    Jian Xu
    Gaoxiang Yang
    Hongguang Xi
    Jianzhong Su
    Nonlinear Dynamics, 2015, 81 : 2155 - 2163
  • [2] SPATIOTEMPORAL DYNAMICS OF TELEGRAPH REACTION-DIFFUSION PREDATOR-PREY MODELS
    Hernandez-Martinez, Eliseo
    Puebla, Hector
    Perez-Munoz, Teresa
    Gonzalez-Brambila, Margarita
    Velasco-Hernandez, Jorge X.
    BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2013, : 268 - 281
  • [3] Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system
    Hu, Guangping
    Li, Xiaoling
    Wang, Yuepeng
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 265 - 275
  • [4] Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay
    Liu, Hua
    Ye, Yong
    Wei, Yumei
    Ma, Weiyuan
    Ma, Ming
    Zhang, Kai
    COMPLEXITY, 2019, 2019
  • [5] Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge
    Lian, Xinze
    Wang, Hailing
    Wang, Weiming
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [6] Global stability of a reaction-diffusion predator-prey model with a nonlocal delay
    Xu, Rui
    Ma, Zhien
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (1-2) : 194 - 206
  • [7] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)
  • [8] A reaction-diffusion predator-prey model with stage structure and nonlocal delay
    Rui Xu
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 984 - 1006
  • [9] Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins
    Zhu, Meiling
    Xu, Huijun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6894 - 6911
  • [10] Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting
    Guin, Lakshmi Narayan
    Pal, Sudipta
    Chakravarty, Santabrata
    Djilali, Salih
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)