How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?

被引:13
作者
Eveleens, Clothilde A. [1 ]
Irle, Stephan [2 ,3 ]
Page, Alister J. [1 ]
机构
[1] Univ Newcastle, Sch Environm & Life Sci, Callaghan, NSW 2308, Australia
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, POB 2009, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Chem Sci Div, POB 2009, Oak Ridge, TN 37831 USA
基金
澳大利亚研究理事会;
关键词
CHEMICAL-VAPOR-DEPOSITION; TRANSITION-METAL; CHIRALITY; NUCLEATION; SIMULATION; WATER; HYDROGEN; DYNAMICS; MECHANISMS; PYROLYSIS;
D O I
10.1016/j.carbon.2019.02.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is a commercial demand for single-walled carbon nanotubes (SWCNTs) with uniform diameters and (n, m) chiralities. However, controlling these structural parameters in practice remains a challenge. Recent studies have shown that acetonitrile reversibly modulates SWCNT diameter during chemical vapour deposition (CVD) growth. Here we propose a mechanism to explain this phenomenon using nonequilibrium quantum chemical molecular dynamics simulations. We reveal that acetonitrile-derived radicals actively abstract hydrogen from surface hydrocarbon species as the SWCNT nucleates. This forms hydrogen (iso)-cyanide as a principal chemical product, and decreases the overall surface carbon density during nucleation. By liberating hydrogen, the number of dangling bonds present at the interface of the nucleating carbon structure is increased, which in turn accelerates SWCNT nucleation kinetics. Critically, the number of pentagon rings formed in the SWCNT precursor cap structure increases. Because the nucleation kinetics are much faster than the kinetics of ring defect healing, the pentagons become 'trapped' in the growing SWCNT cap structure, and this leads to more highly-curved SWCNT caps. These more highly-curved caps, combined with the lower surface carbon density and the faster kinetics of nucleation and growth, will ultimately yield narrower-diameter SWCNTs in the presence of acetonitrile. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 71 条
[1]   Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets [J].
Amama, Placidus B. ;
Pint, Cary L. ;
McJilton, Laura ;
Kim, Seung Min ;
Stach, Eric A. ;
Murray, P. Terry ;
Hauge, Robert H. ;
Maruyama, Benji .
NANO LETTERS, 2009, 9 (01) :44-49
[2]   Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst [J].
An, Hua ;
Kumamoto, Akihito ;
Takezaki, Hiroki ;
Ohyama, Shinnosuke ;
Qian, Yang ;
Inoue, Taiki ;
Ikuhara, Yuichi ;
Chiashi, Shohei ;
Xiang, Rong ;
Maruyama, Shigeo .
NANOSCALE, 2016, 8 (30) :14523-14529
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Nitrogen controlled iron catalyst phase during carbon nanotube growth [J].
Bayer, Bernhard C. ;
Baehtz, Carsten ;
Kidambi, Piran R. ;
Weatherup, Robert S. ;
Mangler, Clemens ;
Kotakoski, Jani ;
Goddard, Caroline J. L. ;
Caneva, Sabina ;
Cabrero-Vilatela, Andrea ;
Meyer, Jannik C. ;
Hofmann, Stephan .
APPLIED PHYSICS LETTERS, 2014, 105 (14)
[5]   Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition [J].
Bower, C ;
Zhou, O ;
Zhu, W ;
Werder, DJ ;
Jin, SH .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2767-2769
[6]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[7]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[8]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[9]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[10]   Model for Self-Assembly of Carbon Nanotubes from Acetylene Based on Real-Time Studies of Vertically Aligned Growth Kinetics [J].
Eres, Gyula ;
Rouleau, C. M. ;
Yoon, Mina ;
Puretzky, A. A. ;
Jackson, J. J. ;
Geohegan, D. B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15484-15491