Effects of growth rate variations on carrier lifetime and interface structure in InAs/GaSb superlattices

被引:14
作者
Murray, L. M. [1 ,2 ]
Lokovic, K. S. [1 ,2 ]
Olson, B. V. [1 ,2 ]
Yildirim, A. [1 ,2 ]
Boggess, T. F. [1 ,2 ,3 ]
Prineas, J. P. [1 ,2 ,3 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
Molecular beam epitaxy; Super lattices; Semiconducting III-V materials; Semiconducting indium compounds; Semiconducting gallium compounds; Semiconducting quarternary alloys; MOLECULAR-BEAM EPITAXY; DETECTORS; TRANSPORT;
D O I
10.1016/j.jcrysgro.2013.10.014
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
InAs/GaSb superlattice samples have been grown with variations in interface design and growth rates of InAs and GaSb. Time resolved photoluminescence measurements show no decrease in Shockley-Read-Hall carrier lifetime for samples with rougher interfaces and a rise and then decrease in lifetimes with increasing growth rate. Interface growth sequences that tend to increase the effective growth rate of the superlattice result in longer lifetimes. The peak lifetime of 82 ns occurs at a growth rate of 0.5 ml/s for both InAs and GaSb. Growth rates from 0.2 to 0.8 ml/s show similar lifetimes, while those at faster growth rates show reduced lifetimes. Transmission electron microscopy and high resolution x-ray diffraction measurements show no variation in superlattice structural quality as a function of InAs and GaSb growth rates. Comparison of photoluminescence results with GalnAsSb quaternary structures suggests that changes in lifetime are not due to changes in superlattice structure, but result from point defects in the layers. (C) 2013 Elsevier EN. All rights reserved.
引用
收藏
页码:194 / 198
页数:5
相关论文
共 24 条
[1]   CONTROL OF INTERFACE STOICHIOMETRY IN INAS/GASB SUPERLATTICES GROWN BY MOLECULAR-BEAM EPITAXY [J].
BENNETT, BR ;
SHANABROOK, BV ;
WAGNER, RJ ;
DAVIS, JL ;
WATERMAN, JR .
APPLIED PHYSICS LETTERS, 1993, 63 (07) :949-951
[2]   Anion control in molecular beam epitaxy of mixed As/Sb III-V heterostructures [J].
Bennett, BR ;
Shanabrook, BV ;
Twigg, ME .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (04) :2157-2161
[3]   Characterization of midwave infrared InAs/GaSb superlattice photodiode [J].
Cervera, C. ;
Rodriguez, J. B. ;
Chaghi, R. ;
Ait-Kaci, H. ;
Christol, P. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
[4]   Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence [J].
Connelly, Blair C. ;
Metcalfe, Grace D. ;
Shen, Hongen ;
Wraback, Michael .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[5]   Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures [J].
Donetsky, Dmitry ;
Svensson, Stefan P. ;
Vorobjev, Leonid E. ;
Belenky, Gregory .
APPLIED PHYSICS LETTERS, 2009, 95 (21)
[6]   Auger recombination in narrow-gap semiconductor superlattices incorporating antimony [J].
Grein, CH ;
Flatté, ME ;
Olesberg, JT ;
Anson, SA ;
Zhang, L ;
Boggess, TF .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7311-7316
[7]   Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J].
Grein, CH ;
Young, PM ;
Flatte, ME ;
Ehrenreich, H .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (12) :7143-7152
[8]   Effect of interfacial formation on the properties of very long wavelength infrared InAs/GaSb superlattices [J].
Haugan, H. J. ;
Brown, G. J. ;
Grazulis, L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03)
[9]   Arsenic cross-contamination in GaSb/InAs superlattices [J].
Jackson, EM ;
Boishin, GI ;
Aifer, EH ;
Bennett, BR ;
Whitman, LJ .
JOURNAL OF CRYSTAL GROWTH, 2004, 270 (3-4) :301-308
[10]   As-soak control of the InAs-on-GaSb interface [J].
Kaspi, R ;
Steinshnider, J ;
Weimer, M ;
Moeller, C ;
Ongstad, A .
JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) :544-549