Stochastic variational inequalities on non-convex domains

被引:8
作者
Buckdahn, Rainer [1 ,2 ]
Maticiuc, Lucian [3 ,4 ]
Pardoux, Etienne [5 ]
Rascanu, Aurel [3 ,6 ]
机构
[1] Univ Bretagne Occidentale, CNRS, UMR 6205, Lab Math, F-29238 Brest 3, France
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[4] Gheorghe Asachi Tech Univ, Dept Math, Iasi 700506, Romania
[5] Aix Marseille Univ, CNRS, Inst Math Marseille, Cent Marseille,I2M,UMR 7373, F-13453 Marseille 13, France
[6] Romanian Acad, Octav Mayer Math Inst, Iasi Branch, Iasi 700506, Romania
关键词
Skorohod problem; Stochastic variational inequalities; Frechet subdifferential; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; SWEEPING PROCESS; OBLIQUE SUBGRADIENTS; REFLECTING BOUNDARY; HILBERT-SPACES; CONVEXITY; EXISTENCE; UNIQUENESS; SET;
D O I
10.1016/j.jde.2015.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this work is to prove in a first step the existence and the uniqueness of a solution of the. following multivalued deterministic differential equation: {dx(t) + partial derivative(-)phi(x(t))(dt) dm(t), t > 0, x(0) = x(0), where m : R+ -> R-d is a continuous function and partial derivative(-)phi is the Frechet subdifferential of a (rho, gamma)-semiconvex function phi; the domain of phi can be non-convex, but some regularities of the boundary are required. The continuity of the map m bar right arrow x : C([0, T]; R-d) - C([0, T]; R-d) associating to the input function m the solution x of the above equation, as well as tightness criteria allows to pass from the above deterministic case to the following stochastic variational inequality driven by a multi-dimensional Brownian motion: {X-t + K-t = xi + integral F-t(0)(s, X-s)ds + integral(t)(0)G(s, X-s)dB(s), t >= 0, dK(t)(omega) is an element of partial derivative(-)phi(X-t(omega))(dt). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7332 / 7374
页数:43
相关论文
共 41 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]  
[Anonymous], 1999, CONVERGE PROBAB MEAS
[3]   Existence of solutions to the nonconvex sweeping process [J].
Benabdellah, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (02) :286-295
[4]  
Benabdellah H., 1996, J APPL ANAL, V2, P217, DOI DOI 10.1515/JAA.1996.217
[5]   Stochastic variational inequalities in infinite dimensional spaces [J].
Bensoussan, A ;
Rascanu, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) :19-54
[6]  
Borwein JM., 2006, CONVEX ANAL NONLINEA
[7]  
Boyd Stephen, 2004, LIEVEN VANDENBERGHE
[8]   On the existence of stochastic optimal control of distributed state system [J].
Buckdahn, R ;
Rascanu, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1153-1184
[9]   On a class of evolution equations without convexity [J].
Cardinali, T ;
Colombo, G ;
Papalini, F ;
Tosques, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (02) :217-234
[10]  
Castaing C., 1996, PORT MATH, V53, P73