An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network

被引:107
作者
Li, Shi [1 ]
Wang, Huaqing [1 ]
Song, Liuyang [1 ]
Wang, Pengxin [1 ]
Cui, Lingli [2 ]
Lin, Tianjiao [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive fusion; CNN; Fault diagnosis; Feature learning; Multiple source signals;
D O I
10.1016/j.measurement.2020.108122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intelligent diagnosis algorithms can monitor faults with industrial production of a timely manner via their powerful learning ability. Multi-sensor diagnosis systems can more comprehensively describe the state of equipment and avoid the influence of incorrect data acquisition locations, which is beneficial to fault diagnosis. The fusion of the original data is a difficult problem, and it is hard to express effective information via traditional algorithms. This paper presents an adaptive data fusion strategy based on deep learning called the convolutional neural network with atrous convolution for the adaptive fusion of multiple source data (FAC-CNN). Specifically, an adaptive-sized convolution kernel that matches the channel of data sources is constructed to capture multi-source data without tedious preprocessing, and the channel of data sources is not limited. The atrous convolution kernel is introduced to expand the field of view of the FAC-CNN and extracts fusion sequence features without repeated computation, resulting in improved stability. The 1D-CNN is added to extract features after atrous convolution. In addition, batch normalization optimizes the distribution of fusion data and the structure of the model. The parametric rectified linear unit activation function and global average pooling are also introduced to improve network performance. The proposed method is validated on an industrial fan system with non-manufacturing faults and a centrifugal pump. Compared with other fusion methods and diagnosis algorithms based on feature engineering, namely CNN, ANN, and SVM, the FAC-CNN model is found to exhibit superior performance. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1990, Wavelets
[2]  
[Anonymous], 2015, Batch-normalized maxout network in network
[3]  
[Anonymous], 2013, ICML
[4]   Bayesian Networks in Fault Diagnosis [J].
Cai, Baoping ;
Huang, Lei ;
Xie, Min .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (05) :2227-2240
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network [J].
Chen, Zhuyun ;
Gryllias, Konstantinos ;
Li, Weihua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) :339-349
[7]   Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network [J].
Chen, Zhuyun ;
Li, Weihua .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) :1693-1702
[8]   A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks [J].
Chine, W. ;
Mellit, A. ;
Lughi, V. ;
Malek, A. ;
Sulligoi, G. ;
Pavan, A. Massi .
RENEWABLE ENERGY, 2016, 90 :501-512
[9]   Fault detection and classification by unsupervised feature extraction and dimensionality reduction [J].
Praveen Chopra ;
Sandeep Kumar Yadav .
Complex & Intelligent Systems, 2015, 1 (1-4) :25-33
[10]   Research on Remaining Useful Life Prediction of Rolling Element Bearings Based on Time-Varying Kalman Filter [J].
Cui, Lingli ;
Wang, Xin ;
Wang, Huaqing ;
Ma, Jianfeng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) :2858-2867