Normal families of meromorphic functions sharing one function

被引:0
作者
Qiu, Ling [1 ]
Hu, FeiFei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
meromorphic function; normal family; shared holomorphic function;
D O I
10.1186/1029-242X-2013-288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose p(z) is a holomorphic function, the multiplicity of its zeros is at most d, P(z) is a nonconstant polynomial. Let F be a family of meromorphic functions in a domain D, all of whose zeros and poles have multiplicity at least max{k/2 + d + 1, k + d}. If for each pair of functions f and g in F, P(f)f((k)) and P(g)g((k)) share a holomorphic function p(z), then F is normal in D. It generalizes and extends the results of Jiang, Gao and Wu, Xu.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
CLUNIE J, 1967, J LONDON MATH SOC, V42, P389
[2]  
Clunie J., 1962, J LOND MATH SOC, V37, P17
[3]  
Hayman W. K., 1967, Research Problems in Function Theory
[4]  
Hayman W. K., 1964, Meromorphic functions
[5]   Normal families of meromorphic functions sharing values or functions [J].
Jiang, Yunbo ;
Gao, Zongsheng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
[6]   Normality criteria of meromorphic functions sharing one value [J].
Meng, Da-Wei ;
Hu, Pei-Chu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :724-731
[7]   HAYMAN PROBLEM [J].
MUES, E .
MATHEMATISCHE ZEITSCHRIFT, 1979, 164 (03) :239-259
[8]   Normal families and shared values [J].
Pang, XC ;
Zalcman, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :325-331
[9]  
Schiff J. L., 1993, Normal Families
[10]  
[王建平 Wang Jianping], 2006, [数学学报, Acta Mathematica Sinica], V49, P443