An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice

被引:84
|
作者
You, Jun [1 ,2 ]
Hu, Honghong [1 ,2 ]
Xiong, Lizhong [1 ,2 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oryza; Abiotic stress; Proline; Ornithine aminotransferase; PROLINE BIOSYNTHESIS; SALT TOLERANCE; AMINO-ACID; TRANSGENIC PLANTS; OVER-EXPRESSION; RESISTANCE; COLD; OVEREXPRESSION; TRANSFORMATION; OSMOTOLERANCE;
D O I
10.1016/j.plantsci.2012.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ornithine S-aminotransferase (delta-OAT) is a pyridoxa1-5'-phosphate-dependent enzyme that has been proposed to be involved in proline (Pro) and arginine (Arg) metabolism. However, the actual role of delta-OAT in abiotic responses in plants remains to be clarified. Here we characterized an ornithine delta-aminotransferase gene OsOAT that confers multi-stress tolerance in rice (Oryza sativa). We confirmed that OsOAT is a direct target of the stress-responsive NAC transcription factor SNAC2. OsOAT is responsive to multiple stresses and phytohormone treatments. Both ABA-dependent and ABA-independent pathways contributed to the drought-induced expression of OsOAT. Overexpression of the OsOAT gene in rice resulted in significantly enhanced drought and osmotic stress tolerance. Overexpression of OsOAT caused significantly increased delta-OAT activity and Pro accumulation under normal growth conditions. In addition, OsOAT-overexpressing plants showed significantly increased tolerance to oxidative stress. The glutathione (GSH) content and activity of reactive oxygen species (ROS)-scavenging enzymes, such as glutathione peroxidase, were also increased in OsOAT-overexpressing plants. We conclude that OsOAT is a target gene of SNAC2 and confers stress tolerance mainly through enhancing ROS-scavenging capacity and Pro pre-accumulation. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [41] Expression of the Kale WRKY Gene BoWRKY10 in Transgenic Tobacco Confers Drought Stress Tolerance
    Guo, J. -J.
    Li, S.
    Li, H. -Y.
    Li, W.
    Li, D. -H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2021, 68 (01) : 147 - 157
  • [42] Overexpression of ArabidopsisABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass
    Yun-Sung Choi
    Yong-Min Kim
    Ok-Jin Hwang
    Yun-Jeong Han
    Soo Young Kim
    Jeong-Il Kim
    Plant Biotechnology Reports, 2013, 7 : 165 - 173
  • [43] TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco
    Hu, Wei
    Huang, Chao
    Deng, Xiaomin
    Zhou, Shiyi
    Chen, Lihong
    Li, Yin
    Wang, Cheng
    Ma, Zhanbing
    Yuan, Qianqian
    Wang, Yan
    Cai, Rui
    Liang, Xiaoyu
    Yang, Guangxiao
    He, Guangyuan
    PLANT CELL AND ENVIRONMENT, 2013, 36 (08): : 1449 - 1464
  • [44] Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis
    Ting Peng
    Cong Guo
    Jie Yang
    Min Xu
    Jing Zuo
    Manzhu Bao
    Junwei Zhang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 126 : 373 - 385
  • [45] Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis
    Peng, Ting
    Guo, Cong
    Yang, Jie
    Xu, Min
    Zuo, Jing
    Bao, Manzhu
    Zhang, Junwei
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 126 (03) : 373 - 385
  • [46] Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis
    Tamirisa, Srinath
    Vudem, Dashavantha Reddy
    Khareedu, Venkateswara Rao
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (17) : 4769 - 4781
  • [47] Expression of the Kale WRKY Gene BoWRKY10 in Transgenic Tobacco Confers Drought Stress Tolerance
    J.-J. Guo
    S. Li
    H.-Y. Li
    W. Li
    D.-H. Li
    Russian Journal of Plant Physiology, 2021, 68 : 147 - 157
  • [48] Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum
    Sarwat, Maryam
    Naqvi, Afsar Raza
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (09) : 5451 - 5464
  • [49] Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum
    Maryam Sarwat
    Afsar Raza Naqvi
    Molecular Biology Reports, 2013, 40 : 5451 - 5464
  • [50] Heterologous expression of PDH47 confers drought tolerance in indica rice
    Singha, Dhanawantari L.
    Tuteja, Narendra
    Boro, Dimple
    Hazarika, Girindra Nath
    Singh, Salvinder
    PLANT CELL TISSUE AND ORGAN CULTURE, 2017, 130 (03) : 577 - 589