An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice

被引:84
|
作者
You, Jun [1 ,2 ]
Hu, Honghong [1 ,2 ]
Xiong, Lizhong [1 ,2 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oryza; Abiotic stress; Proline; Ornithine aminotransferase; PROLINE BIOSYNTHESIS; SALT TOLERANCE; AMINO-ACID; TRANSGENIC PLANTS; OVER-EXPRESSION; RESISTANCE; COLD; OVEREXPRESSION; TRANSFORMATION; OSMOTOLERANCE;
D O I
10.1016/j.plantsci.2012.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ornithine S-aminotransferase (delta-OAT) is a pyridoxa1-5'-phosphate-dependent enzyme that has been proposed to be involved in proline (Pro) and arginine (Arg) metabolism. However, the actual role of delta-OAT in abiotic responses in plants remains to be clarified. Here we characterized an ornithine delta-aminotransferase gene OsOAT that confers multi-stress tolerance in rice (Oryza sativa). We confirmed that OsOAT is a direct target of the stress-responsive NAC transcription factor SNAC2. OsOAT is responsive to multiple stresses and phytohormone treatments. Both ABA-dependent and ABA-independent pathways contributed to the drought-induced expression of OsOAT. Overexpression of the OsOAT gene in rice resulted in significantly enhanced drought and osmotic stress tolerance. Overexpression of OsOAT caused significantly increased delta-OAT activity and Pro accumulation under normal growth conditions. In addition, OsOAT-overexpressing plants showed significantly increased tolerance to oxidative stress. The glutathione (GSH) content and activity of reactive oxygen species (ROS)-scavenging enzymes, such as glutathione peroxidase, were also increased in OsOAT-overexpressing plants. We conclude that OsOAT is a target gene of SNAC2 and confers stress tolerance mainly through enhancing ROS-scavenging capacity and Pro pre-accumulation. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [21] Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis
    Cheong, Yong Hwa
    Sung, Sun Jin
    Kim, Beom-Gi
    Pandey, Girdhar K.
    Cho, Ju-Sik
    Kim, Kyung-Nam
    Luan, Sheng
    MOLECULES AND CELLS, 2010, 29 (02) : 159 - 165
  • [22] Overexpression of TaSTRG gene improves salt and drought tolerance in rice
    Zhou, Wei
    Li, Ying
    Zhao, Bao-Cun
    Ge, Rong-Chao
    Shen, Yin-Zhu
    Wang, Gang
    Huang, Zhan-Jing
    JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (15) : 1660 - 1671
  • [23] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    Zeng, De-Er
    Hou, Pei
    Xiao, Fangming
    Liu, Yongsheng
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 24 (01) : 56 - 64
  • [24] OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice
    Lou, Dengji
    Wang, Houping
    Liang, Gang
    Yu, Diqiu
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [25] A β-Carotene Ketolase Gene NfcrtO from Subaerial Cyanobacteria Confers Drought Tolerance in Rice
    Gao, Ningning
    Ye, Shuifeng
    Zhang, Yu
    Zhou, Liguo
    Ma, Xiaosong
    Yu, Hanxi
    Li, Tianfei
    Han, Jing
    Liu, Zaochang
    Luo, Lijun
    RICE SCIENCE, 2024, 31 (01) : 62 - 76
  • [26] Ectopic expression of choline oxidase (codA) gene from Arthrobacter globiformis confers drought stress tolerance in transgenic sugarcane
    Chinnaswamy, Appunu
    Harish Chandar, S. R.
    Ramanathan, Valarmathi
    Chennappa, Mahadevaiah
    Sakthivel, Surya Krishna
    Arthanari, Malarvizhi
    Thangavel, Swathi
    Raja, Arun Kumar
    Devarumath, Rachayya
    Vijayrao, Sushir Kapil
    Boominathan, Parasuraman
    3 BIOTECH, 2024, 14 (12)
  • [27] A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice
    You, Jun
    Zong, Wei
    Hu, Honghong
    Li, Xianghua
    Xiao, Jinghua
    Xiong, Lizhong
    PLANT PHYSIOLOGY, 2014, 166 (04) : 2100 - +
  • [28] Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis
    Tunc-Ozdemir, Meral
    Miller, Gad
    Song, Luhua
    Kim, James
    Sodek, Ahmet
    Koussevitzky, Shai
    Misra, Amarendra Narayan
    Mittler, Ron
    Shintani, David
    PLANT PHYSIOLOGY, 2009, 151 (01) : 421 - 432
  • [29] Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation
    Campo, Sonia
    Baldrich, Patricia
    Messeguer, Joaquima
    Lalanne, Eric
    Coca, Maria
    San Segundo, Blanca
    PLANT PHYSIOLOGY, 2014, 165 (02) : 688 - 704
  • [30] Expression of the Kale WRKY Gene BoWRKY10 in Transgenic Tobacco Confers Drought Stress Tolerance
    Guo, J. -J.
    Li, S.
    Li, H. -Y.
    Li, W.
    Li, D. -H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2021, 68 (01) : 147 - 157