An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice

被引:84
|
作者
You, Jun [1 ,2 ]
Hu, Honghong [1 ,2 ]
Xiong, Lizhong [1 ,2 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oryza; Abiotic stress; Proline; Ornithine aminotransferase; PROLINE BIOSYNTHESIS; SALT TOLERANCE; AMINO-ACID; TRANSGENIC PLANTS; OVER-EXPRESSION; RESISTANCE; COLD; OVEREXPRESSION; TRANSFORMATION; OSMOTOLERANCE;
D O I
10.1016/j.plantsci.2012.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ornithine S-aminotransferase (delta-OAT) is a pyridoxa1-5'-phosphate-dependent enzyme that has been proposed to be involved in proline (Pro) and arginine (Arg) metabolism. However, the actual role of delta-OAT in abiotic responses in plants remains to be clarified. Here we characterized an ornithine delta-aminotransferase gene OsOAT that confers multi-stress tolerance in rice (Oryza sativa). We confirmed that OsOAT is a direct target of the stress-responsive NAC transcription factor SNAC2. OsOAT is responsive to multiple stresses and phytohormone treatments. Both ABA-dependent and ABA-independent pathways contributed to the drought-induced expression of OsOAT. Overexpression of the OsOAT gene in rice resulted in significantly enhanced drought and osmotic stress tolerance. Overexpression of OsOAT caused significantly increased delta-OAT activity and Pro accumulation under normal growth conditions. In addition, OsOAT-overexpressing plants showed significantly increased tolerance to oxidative stress. The glutathione (GSH) content and activity of reactive oxygen species (ROS)-scavenging enzymes, such as glutathione peroxidase, were also increased in OsOAT-overexpressing plants. We conclude that OsOAT is a target gene of SNAC2 and confers stress tolerance mainly through enhancing ROS-scavenging capacity and Pro pre-accumulation. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [11] Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum
    Shi, Yanmei
    Liu, Pingping
    Xia, Yuzhen
    Wei, Pan
    Li, Wenzheng
    Zhang, Wei
    Chen, Xia
    Cao, Peijian
    Xu, Yalong
    Jin, Lifeng
    Li, Feng
    Luo, Zhaopeng
    Wei, Chunyang
    Zhang, Jianfeng
    Xie, Xiaodong
    Qu, Lingbo
    Yang, Jun
    Lin, Fucheng
    Wang, Ran
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (10)
  • [12] Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice
    Dou, Mingzhu
    Fan, Sanhong
    Yang, Suxin
    Huang, Rongfeng
    Yu, Huiyun
    Feng, Xianzhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (01)
  • [13] The effects of cross-tolerance to oxidative stress and drought stress on rice dry matter production under aerobic conditions
    Iseki, Kohtaro
    Homma, Koki
    Shiraiwa, Tatsuhiko
    Jongdee, Boonrat
    Mekwatanakarn, Poonsak
    FIELD CROPS RESEARCH, 2014, 163 : 18 - 23
  • [14] Heterologous expression of ZmNF-YA12 confers tolerance to drought and salt stress in Arabidopsis
    Zhang, Tongtong
    Zheng, Dengyu
    Zhang, Chun
    Wu, Zhongyi
    Yu, Rong
    Zhang, Zhongbao
    PLANT BIOTECHNOLOGY REPORTS, 2022, 16 (04) : 437 - 448
  • [15] The suppressed expression of a stress responsive gene 'OsDSR2' enhances rice tolerance in drought and salt stress
    Luo, Chengke
    Akhtar, Maryam
    Min, Weifang
    Alam, Yasir
    Ma, Tianli
    Shi, Yafei
    She, Yangmengfei
    Lu, Xuping
    JOURNAL OF PLANT PHYSIOLOGY, 2023, 282
  • [16] Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean
    Seo, Jun Sung
    Sohn, Hwang Bae
    Noh, Kaeyoung
    Jung, Choonkyun
    An, Ju Hee
    Donovan, Christopher M.
    Somers, David A.
    Kim, Dae In
    Jeong, Soon-Chun
    Kim, Chang-Gi
    Kim, Hwan Mook
    Lee, Suk-Ha
    Choi, Yang Do
    Moon, Tae Wha
    Kim, Chung Ho
    Cheong, Jong-Joo
    MOLECULAR BREEDING, 2012, 29 (03) : 601 - 608
  • [17] Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass
    Choi, Yun-Sung
    Kim, Yong-Min
    Hwang, Ok-Jin
    Han, Yun-Jeong
    Kim, Soo Young
    Kim, Jeong-Il
    PLANT BIOTECHNOLOGY REPORTS, 2013, 7 (02) : 165 - 173
  • [18] Expression of ZmHDZ4, a Maize Homeodomain-Leucine Zipper I Gene, Confers Tolerance to Drought Stress in Transgenic Rice
    Wu, Jiandong
    Zhou, Wei
    Gong, Xuefeng
    Cheng, Beijiu
    PLANT MOLECULAR BIOLOGY REPORTER, 2016, 34 (04) : 845 - 853
  • [19] Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives
    Anwar, Alia
    She, Maoyun
    Wang, Ke
    Riaz, Bisma
    Ye, Xingguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [20] OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice
    Wang Fei-bing
    Wan Chen-zhong
    Niu Hao-fei
    Qi Ming-yang
    Li Gang
    Zhang Fan
    Hu Lai-bao
    Ye Yu-xiu
    Wang Zun-xin
    Pei Bao-lei
    Chen Xin-hong
    Yuan Cai-yong
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2023, 22 (02) : 341 - 359