CHARACTERIZATION OF FINITE p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS (t=6)

被引:0
作者
Jafari, S. Hadi [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
来源
MATHEMATICAL REPORTS | 2016年 / 18卷 / 04期
关键词
Schur multiplier; non-abelian tensor square; ABELIAN TENSOR SQUARE; PRIME-POWER GROUP; ODD PRIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n). In 1956, Green proved that the order of M(G), the Schur multiplier of G, is equal to p(1/2n(n-1)-t) for some integer t >= 0. The p-groups which satisfy 0 <= t <= 5 are determined up to now. In this paper, we classify all finite p-groups with t = 6.
引用
收藏
页码:535 / 543
页数:9
相关论文
共 21 条
[1]   ON THE NONABELIAN TENSOR SQUARE OF A NILPOTENT GROUP OF CLASS 2 [J].
BACON, MR .
GLASGOW MATHEMATICAL JOURNAL, 1994, 36 :291-296
[2]   ON THE ORDER OF THE COMMUTATOR SUBGROUP AND THE SCHUR MULTIPLIER OF A FINITE P-GROUP [J].
BERKOVICH, YG .
JOURNAL OF ALGEBRA, 1991, 144 (02) :269-272
[3]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[4]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[5]   An effective version of the Lazard correspondence [J].
Cicalo, Serena ;
de Graaf, Willem A. ;
Vaughan-Lee, Michael .
JOURNAL OF ALGEBRA, 2012, 352 (01) :430-450
[6]   Schur multipliers and the Lazard correspondence [J].
Eick, Bettina ;
Horn, Max ;
Zandi, Seiran .
ARCHIV DER MATHEMATIK, 2012, 99 (03) :217-226
[7]   On the Schur multiplier of p-groups [J].
Ellis, G .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4173-4177
[8]   A bound on the schur multiplier of a prime-power group [J].
Ellis, G ;
Wiegold, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) :191-196
[9]   ON THE NUMBER OF AUTOMORPHISMS OF A FINITE GROUP [J].
GREEN, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 237 (1211) :574-581
[10]   On characterizing nilpotent lie algebras by their multipliers, III [J].
Hardy, P .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) :4205-4210