The thermodynamic critical field and specific heat of superconducting state in phosphorene under strain

被引:0
作者
Szewczyk, Kamila A. [1 ]
Kaczmarek, Adam Z. [2 ]
Drzazga, Ewa A. [2 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Phys, Ave Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
[2] Czestochowa Tech Univ, Inst Phys, Ave Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 07期
关键词
Superconductivity; thermodynamic critical field; specific heat; phosphorene; BLACK; PHASE;
D O I
10.1142/S0217984919500799
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we present the thermodynamic properties of the superconducting state in phosphorene. In particular, we have examined the electron doped (n(D) = 1.3x10(14) cm(-2)) and biaxially strained (4%) monolayer of black phosphorous, which exhibits best thermodynamic stability and highest superconducting critical temperature (T-c) among all monolayer phosphorene structures. Due to the confirmed electronphonon pairing mechanism and relatively high electronphonon coupling constant in the studied material, we carried out the calculations in the framework of the Eliashberg formalism for a wide range of the Coulomb pseudopotential mu* is an element of < 0.1, 0.3 > . We have determined the thermodynamic critical field (H-c), and the specific heat difference (Delta C) between superconducting (C-S) and normal state (C-N) as the functions of the temperature. In addition, we have calculated the dimensionless parameters R-C = Delta C(T-c)/C-N(T-c) and R-H = TcCN(T-c)/H-c(2)(0), and also found their significant deviation from the expectations of the BCS theory. In particular, R-C < 2.724, 1.899 > and R-H < 0.133, 0.155 > for mu* is an element of < 0.1, 0.3 >.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] THEORY OF SUPERCONDUCTIVITY
    BARDEEN, J
    COOPER, LN
    SCHRIEFFER, JR
    [J]. PHYSICAL REVIEW, 1957, 108 (05): : 1175 - 1204
  • [2] MICROSCOPIC THEORY OF SUPERCONDUCTIVITY
    BARDEEN, J
    COOPER, LN
    SCHRIEFFER, JR
    [J]. PHYSICAL REVIEW, 1957, 106 (01): : 162 - 164
  • [3] Bardeen J., 1964, PHYS REV, V7, pA1485
  • [4] PROPERTIES OF BOSON-EXCHANGE SUPERCONDUCTORS
    CARBOTTE, JP
    [J]. REVIEWS OF MODERN PHYSICS, 1990, 62 (04) : 1027 - 1157
  • [5] Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells
    Dai, Jun
    Zeng, Xiao Cheng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1289 - 1293
  • [6] Hybrid superconductor-quantum dot devices
    De Franceschi, Silvano
    Kouwenhoven, Leo
    Schoenenberger, Christian
    Wernsdorfer, Wolfgang
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 703 - 711
  • [7] Low-noise current amplifier based on mesoscopic Josephson junction
    Delahaye, J
    Hassel, J
    Lindell, R
    Sillanpää, M
    Paalanen, M
    Seppä, H
    Hakonen, P
    [J]. SCIENCE, 2003, 299 (5609) : 1045 - 1048
  • [8] Characterization of the superconducting state in hafnium hydride under high pressure
    Duda, A. M.
    Szewczyk, K. A.
    Jarosik, M. W.
    Szczesniak, K. M.
    Sowinska, M. A.
    Szczesniak, D.
    [J]. PHYSICA B-CONDENSED MATTER, 2018, 536 : 275 - 279
  • [9] Study of the superconducting phase in silicene under biaxial tensile strain
    Durajski, A. P.
    Szczesniak, D.
    Szczesniak, R.
    [J]. SOLID STATE COMMUNICATIONS, 2014, 200 : 17 - 21
  • [10] ELIASHBERG GM, 1960, SOV PHYS JETP-USSR, V11, P696