On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces

被引:241
作者
Erbar, Matthias [1 ]
Kuwada, Kazumasa [2 ]
Sturm, Karl-Theodor [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Tokyo Inst Technol, Grad Sch Sci, Meguro Ku, Tokyo 1528551, Japan
关键词
RICCI CURVATURE; LI-YAU; EULERIAN CALCULUS; HEAT-FLOW; ALEXANDROV; CONTRACTION; GEOMETRY;
D O I
10.1007/s00222-014-0563-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the equivalence of the curvature-dimension bounds of Lott-Sturm-Villani (via entropy and optimal transport) and of Bakry-A parts per thousand mery (via energy and -calculus) in complete generality for infinitesimally Hilbertian metric measure spaces. In particular, we establish the full Bochner inequality on such metric measure spaces. Moreover, we deduce new contraction bounds for the heat flow on Riemannian manifolds and on mms in terms of the -Wasserstein distance.
引用
收藏
页码:993 / 1071
页数:79
相关论文
共 47 条
  • [1] Ambrosio L., 2014, J GEOM ANAL
  • [2] Ambrosio L., T AM MATH SOC
  • [3] Ambrosio L., 2006, Gradient Flows in Metric Spaces and in the Space of Probability Measures
  • [4] Ambrosio L., NONLINEAR DIFFUSION
  • [5] Ambrosio L., 2012, CIME LECT NOTES MATH
  • [6] METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) : 1405 - 1490
  • [7] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. INVENTIONES MATHEMATICAE, 2014, 195 (02) : 289 - 391
  • [8] BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS
    Ambrsio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. ANNALS OF PROBABILITY, 2015, 43 (01) : 339 - 404
  • [9] Bacher K., 2014, Singular phenomena and scaling in mathematical models, P3
  • [10] Localization and tensorization properties of the curvature-dimension condition for metric measure spaces
    Bacher, Kathrin
    Sturm, Karl-Theodor
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) : 28 - 56