The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma

被引:67
作者
McBride, Margaret A. [1 ]
Owen, Allison M. [2 ]
Stothers, Cody L. [1 ]
Hernandez, Antonio [2 ]
Luan, Liming [2 ]
Burelbach, Katherine R. [2 ]
Patil, Tazeen K. [2 ]
Bohannon, Julia K. [1 ,2 ]
Sherwood, Edward R. [1 ,2 ]
Patil, Naeem K. [2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Pathol Microbiol & Immunol, Nashville, TN USA
[2] Vanderbilt Univ, Med Ctr, Dept Anesthesiol, Nashville, TN 37232 USA
来源
FRONTIERS IN IMMUNOLOGY | 2020年 / 11卷
基金
美国国家卫生研究院;
关键词
sepsis; infection; trauma; trained immunity; mitochondria; metabolic reprogramming; ACTIVATED PROTEIN-KINASE; MONOPHOSPHORYL-LIPID-A; TUMOR-NECROSIS-FACTOR; PROMOTES MITOCHONDRIAL BIOGENESIS; CHRONIC CRITICAL ILLNESS; BLOOD MONONUCLEAR-CELLS; TOLL-LIKE RECEPTOR-4; SEPTIC SHOCK; BACTERIAL CLEARANCE; SUCCINATE-DEHYDROGENASE;
D O I
10.3389/fimmu.2020.01043
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or beta-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or beta-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
引用
收藏
页数:21
相关论文
共 256 条
  • [1] Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis
    Adrie, C
    Bachelet, M
    Vayssier-Taussat, M
    Russo-Marie, F
    Bouchaert, I
    Adib-Conquy, M
    Cavaillon, JM
    Pinsky, MR
    Dhainaut, JF
    Polla, BS
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2001, 164 (03) : 389 - 395
  • [2] 5-HT and the immune system
    Ahern, Gerard P.
    [J]. CURRENT OPINION IN PHARMACOLOGY, 2011, 11 (01) : 29 - 33
  • [3] S100A9 maintains myeloid-derived suppressor cells in chronic sepsis by inducing miR-21 and miR-181b
    Alkhateeb, Tuqa
    Kumbhare, Ajinkya
    Bah, Isatou
    Youssef, Dima
    Yao, Zhi Q.
    McCall, Charles E.
    El Gazzar, Mohamed
    [J]. MOLECULAR IMMUNOLOGY, 2019, 112 : 72 - 81
  • [4] Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity
    Arts, Rob J. W.
    Novakovic, Boris
    ter Horst, Rob
    Carvalho, Agostinho
    Bekkering, Siroon
    Lachmandas, Ekta
    Rodrigues, Fernando
    Silvestre, Ricardo
    Cheng, Shih-Chin
    Wang, Shuang-Yin
    Habibi, Ehsan
    Goncalves, Luis G.
    Mesquita, Ines
    Cunha, Cristina
    van Laarhoven, Arjan
    van de Veerdonk, Frank L.
    Williams, David L.
    van der Meer, Jos W. M.
    Logie, Colin
    O'Neill, Luke A.
    Dinarello, Charles A.
    Riksen, Niels P.
    van Crevel, Reinout
    Clish, Clary
    Notebaart, Richard A.
    Joosten, Leo A. B.
    Stunnenberg, Hendrik G.
    Xavier, Ramnik J.
    Netea, Mihai G.
    [J]. CELL METABOLISM, 2016, 24 (06) : 807 - 819
  • [5] MITOCHONDRIAL FUNCTION IN SEPSIS
    Arulkumaran, Nishkantha
    Deutschman, Clifford S.
    Pinsky, Michael R.
    Zuckerbraun, Brian
    Schumacker, Paul T.
    Gomez, Hernando
    Gomez, Alonso
    Murray, Patrick
    Kellum, John A.
    [J]. SHOCK, 2016, 45 (03): : 271 - 281
  • [6] Malaria-Induced NLRP12/NLRP3-Dependent Caspase-1 Activation Mediates Inflammation and Hypersensitivity to Bacterial Superinfection
    Ataide, Marco A.
    Andrade, Warrison A.
    Zamboni, Dario S.
    Wang, Donghai
    Souza, Maria do Carmo
    Franklin, Bernardo S.
    Elian, Samir
    Martins, Flaviano S.
    Pereira, Dhelio
    Reed, George
    Fitzgerald, Katherine A.
    Golenbock, Douglas T.
    Gazzinelli, Ricardo T.
    [J]. PLOS PATHOGENS, 2014, 10 (01)
  • [7] RANDOMIZED PHASE I/II TRIAL OF A MACROPHAGE-SPECIFIC IMMUNOMODULATOR (PGG-GLUCAN) IN HIGH-RISK SURGICAL PATIENTS
    BABINEAU, TJ
    MARCELLO, P
    SWAILS, W
    KENLER, A
    BISTRIAN, B
    FORSE, RA
    [J]. ANNALS OF SURGERY, 1994, 220 (05) : 601 - 609
  • [8] Hemodynamic effects of IV milrinone lactate in pediatric patients with septic shock - A prospective, double-blinded, randomized, placebo-controlled, interventional study
    Barton, P
    Garcia, J
    Kouatli, A
    Kitchen, L
    Zorka, A
    Lindsay, C
    Lawless, S
    Giroir, B
    [J]. CHEST, 1996, 109 (05) : 1302 - 1312
  • [9] Treatment of sepsis - Past and future avenues
    Baumgartner, JD
    Calandra, T
    [J]. DRUGS, 1999, 57 (02) : 127 - 132
  • [10] Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis
    Belikova, Ioulia
    Lukaszewicz, Anne Claire
    Faivre, Valerie
    Damoisel, Charles
    Singer, Mervyn
    Payen, Didier
    [J]. CRITICAL CARE MEDICINE, 2007, 35 (12) : 2702 - 2708