Hydrodynamic relaxations in dissipative particle dynamics

被引:3
|
作者
Hansen, J. S. [1 ]
Greenfield, Michael L. [2 ]
Dyre, Jeppe C. [1 ]
机构
[1] Roskilde Univ, Dept Sci & Environm, Glass & Time IMFUFA, Postbox 260, DK-4000 Roskilde, Denmark
[2] Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 03期
关键词
TRANSPORT-COEFFICIENTS; MESOSCOPIC SIMULATION; MOLECULAR-DYNAMICS; EQUILIBRIUM; FLUIDS; MODEL;
D O I
10.1063/1.4986569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] FLEXIBLE DISSIPATIVE PARTICLE DYNAMICS
    Huang, Z. G.
    Yue, T. M.
    Chan, K. C.
    Guo, Z. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (09): : 1129 - 1148
  • [22] Dissipative particle dynamics simulation of dilute polymer solutions-Inertial effects and hydrodynamic interactions
    Zhao, Tongyang
    Wang, Xiaogong
    Jiang, Lei
    Larson, Ronald G.
    JOURNAL OF RHEOLOGY, 2014, 58 (04) : 1039 - 1058
  • [23] Quantum dynamics for dissipative systems: A hydrodynamic perspective
    Burghardt, I
    Moller, KB
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (16): : 7409 - 7425
  • [24] From molecular dynamics to dissipative particle dynamics
    Flekkoy, EG
    Coveney, PV
    PHYSICAL REVIEW LETTERS, 1999, 83 (09) : 1775 - 1778
  • [25] An alternative approach to dissipative particle dynamics
    Lowe, CP
    EUROPHYSICS LETTERS, 1999, 47 (02): : 145 - 151
  • [26] An extended dissipative particle dynamics model
    Cotter, CJ
    Reich, S
    EUROPHYSICS LETTERS, 2003, 64 (06): : 723 - 729
  • [27] Collective effects in dissipative particle dynamics
    Serrano, M.
    Español, P.
    Zúñiga, Ignacio
    Computer Physics Communications, 1999, 121 : 306 - 308
  • [28] Dissipative particle dynamics with energy conservation
    Avalos, JB
    Mackie, AD
    EUROPHYSICS LETTERS, 1997, 40 (02): : 141 - 146
  • [29] Geometric ergodicity for dissipative particle dynamics
    Shardlow, T
    Yan, YB
    STOCHASTICS AND DYNAMICS, 2006, 6 (01) : 123 - 154
  • [30] On the microscopic foundation of dissipative particle dynamics
    Eriksson, A.
    Jacobi, M. Nilsson
    Nystrom, J.
    Tunstrom, K.
    EPL, 2009, 86 (04)