Physical Observation of a Thermo-Morphic Transition in a Silicon Nanowire

被引:12
作者
Choi, Sung-Jin [1 ]
Moon, Dong-Il [1 ]
Duarte, Juan P. [1 ]
Ahn, Jae-Hyuk [1 ]
Choi, Yang-Kyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
thermo-morphic transition; thermo-morphism; silicon nanowire; electrical breakdown; air ambient; vacuum ambient; Joule heating; self-heating; current-induced oxidation; oxidation; thermal conductivity; multiple resistance; FIELD-EFFECT TRANSISTORS; CARBON NANOTUBE; ROOM-TEMPERATURE; ELECTRICAL BREAKDOWN; DEVICES; PERFORMANCE; CONDUCTIVITY; CIRCUITS; MEMORY;
D O I
10.1021/nn2046295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A thermo-morphic transition of a silicon nanowire (Si-NW) is investigated in vacuum and air ambients, and notable differences are found under each ambient. In the vacuum ambient, permanent electrical breakdown occurs as a result of the Joule self-heating arising from the applied voltage across both ends of the Si-NW. The resulting current abruptly declines from a maximum value at the breakdown voltage (V-BD) to zero. In addition, the thermal conductivity of the Si-NW is extracted from the V-BD values under the vacuum ambient and shows good agreement with previously reported results. While the breakdown of the Si-NW does not exhibit negative differential resistance under the vacuum ambient, it interestingly shows negative differential resistance with multiple resistances in the current-voltage characteristics under the air ambient, similar to the behavior of carbon nanotubes. This behavior is triggered by current-induced oxidation, which leads to the thermo-morphic transition observed by TEM analyses. Additionally, the current-induced oxidation is favorably applied to reduce the size of a Si-NW at a localized and designated point.
引用
收藏
页码:2378 / 2384
页数:7
相关论文
共 31 条
[1]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[2]   Probing nanoscale solids at thermal extremes [J].
Begtrup, G. E. ;
Ray, K. G. ;
Kessler, B. M. ;
Yuzvinsky, T. D. ;
Garcia, H. ;
Zettl, Alex .
PHYSICAL REVIEW LETTERS, 2007, 99 (15)
[3]   Monte Carlo simulation of silicon nanowire thermal conductivity [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10) :1129-1137
[4]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[5]   Current saturation and electrical breakdown in multiwalled carbon nanotubes [J].
Collins, PG ;
Hersam, M ;
Arnold, M ;
Martel, R ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3128-3131
[6]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[7]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[8]   Rotational actuators based on carbon nanotubes [J].
Fennimore, AM ;
Yuzvinsky, TD ;
Han, WQ ;
Fuhrer, MS ;
Cumings, J ;
Zettl, A .
NATURE, 2003, 424 (6947) :408-410
[9]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[10]   Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes [J].
Huang, JY ;
Chen, S ;
Jo, SH ;
Wang, Z ;
Han, DX ;
Chen, G ;
Dresselhaus, MS ;
Ren, ZF .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)