Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals

被引:7
作者
Argac, N. [1 ]
De Filippis, V. [2 ]
Inceboz, H. G. [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Izmir, Turkey
[2] Univ Messina, Fac Engn, I-98166 Messina, Italy
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2008年 / 120卷
关键词
D O I
10.4171/RSMUP/120-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a commutative ring with unity, R a prime K-algebra, with extended centroid C and right Utumi quotient ring U, g a non-zero generalized derivation of R. Suppose that f(x(1), . . . . ,x(n)) is a multilinear polynomial over K, I is a non-zero right ideal of R and m >= 1, a fixed integer. We prove the following results: If g(f(r(1), . . . . , r(n)))(m) = 0, for all r(1), . . . . , r(n) is an element of I, then one of the following holds: (1) [f(r(1), . . . . . , X-n), Xn+1] Xn+2 is an identity for I; (2) g(x) = ax for all X is an element of R, where a is an element of U such that aI = 0; (3) g(x) = ax + [q, x] for all X is an element of R, where a, q is an element of U such that aI = 0 and [q, I] I = 0. If there exist a(1), . . . , a(n) is an element of I such that g(f(a(1), . . . . , a(n)))(m) not equal 0 and g(f (r(1), . . . , r(n)))(m) is an element of Z(R), for all r(1), . . . . , r(n) is an element of I, then one of the following holds: (1) f(x(1), . . . . , x(n))x(n+1) is an identity for I; (2) f(x(1), . . . . , x(n)) is central valued on R; (3) g(x) = ax for a is an element of C and f(x(1), . . . . , x(n)) is power central valued on R; (4) R satisfies s(4), the standard identity in four variables.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 23 条
[1]  
Beidar K. I., 1996, PURE APPL MATH
[2]   Annihilators of power values of derivations in prime rings [J].
Chang, CM ;
Lee, TK .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) :2091-2113
[3]  
Chang CM, 2003, TAIWAN J MATH, V7, P329
[4]  
Chuang C. L., 1996, CHINESE J MATH, V24, P177
[5]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[6]  
Felzenszwalb B., 1978, Canad. Math. Bull, V21, P241, DOI [10.4153/CMB-1978-040-0, DOI 10.4153/CMB-1978-040-0]
[7]  
GIAMBRUNO A, 1981, REND CIRC MAT PALERM, V30, P199
[8]  
Herstein I. N., 1969, Topics in Ring Theory
[9]  
Herstein I.N., 1981, CONT MATH, V13, P163
[10]   Generalized derivations in rings [J].
Hvala, B .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (04) :1147-1166