Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum Repeaters

被引:47
作者
van Loock, Peter [1 ]
Alt, Wolfgang
Becher, Christoph [3 ]
Benson, Oliver [4 ,5 ]
Boche, Holger [6 ,7 ]
Deppe, Christian [8 ]
Eschner, Juergen [3 ]
Hoefling, Sven [9 ,10 ]
Meschede, Dieter [2 ]
Michler, Peter [11 ,12 ]
Schmidt, Frank [1 ]
Weinfurter, Harald [13 ,14 ,15 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, Staudingerweg 7, D-55128 Mainz, Germany
[2] Univ Bonn, Inst Appl Phys, Wegelerstr 8, D-53115 Bonn, Germany
[3] Univ Saarland, Fachrichtung Phys, Campus E2-6, D-66123 Saarbrucken, Germany
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Humboldt Univ, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[6] Tech Univ Munich, Lehrstuhl Theoret Informat Tech, D-80290 Munich, Germany
[7] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
[8] Tech Univ Munich, Lehrstuhl Nachrichtentech, D-80290 Munich, Germany
[9] Univ Wurzburg, Tech Phys Phys Inst, D-97074 Wurzburg, Germany
[10] Univ Wurzburg, Wilhelm Conrad Rontgen Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[11] Univ Stuttgart, Inst Halbleiteropt & Funkt Grenzflachen IHFG, Ctr Integrated Quantum Sci & Technol IQST, Allmandring 3, D-70569 Stuttgart, Germany
[12] Univ Stuttgart, SCoPE, Allmandring 3, D-70569 Stuttgart, Germany
[13] Ludwig Maximilians Univ Munchen, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[14] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
[15] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
关键词
color centers; quantum communication; quantum dots; quantum repeaters; trapped atoms; ions; ENTANGLEMENT; PHOTONS;
D O I
10.1002/qute.201900141
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Elementary building blocks for quantum repeaters based on fiber channels and memory stations are analyzed. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. The performances of basic quantum repeater links for these platforms are evaluated and compared, both for present-day, state-of-the-art experimental parameters as well as for parameters that can in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances-up to a few 100 km-in which the repeater-assisted secret key transmission rates exceed the maximal rate achievable via direct transmission. Two different protocols are considered, one of which is better adapted to the higher source clock rate and lower memory coherence time of the quantum dot platform, while the other circumvents the need of writing photonic quantum states into the memories in a heralded, nondestructive fashion. The elementary building blocks and protocols can be connected in a modular form to construct a quantum repeater system that is potentially scalable to large distances.
引用
收藏
页数:15
相关论文
共 77 条
  • [1] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    [J]. PHYSICAL REVIEW A, 2014, 89 (01)
  • [2] [Anonymous], 2019, ARXIV190210209
  • [3] [Anonymous], ARXIV190206884
  • [4] All-photonic intercity quantum key distribution
    Azuma, Koji
    Tamaki, Kiyoshi
    Munro, William J.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity
    Ballance, T. G.
    Meyer, H. M.
    Kobel, P.
    Ott, K.
    Reichel, J.
    Koehl, M.
    [J]. PHYSICAL REVIEW A, 2017, 95 (03)
  • [6] Entanglement Swapping with Photons Generated on Demand by a Quantum Dot
    Basset, F. Basso
    Rota, M. B.
    Schimpf, C.
    Tedeschi, D.
    Zeuner, K. D.
    da Silva, S. F. Covre
    Reindl, M.
    Zwiller, V
    Jons, K. D.
    Rastelli, A.
    Trotta, R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [7] BENNETT C. H., 1984, PROC IEEE INT C COMP, V175, P8, DOI DOI 10.1016/J.TCS.2014.05.025
  • [8] Bhaskar M. K., 2019, ARXIV190901323
  • [9] Bluhm H, 2011, NAT PHYS, V7, P109, DOI [10.1038/nphys1856, 10.1038/NPHYS1856]
  • [10] Secure Quantum Key Distribution over 421 km of Optical Fiber
    Boaron, Alberto
    Boso, Gianluca
    Rusca, Davide
    Vulliez, Cedric
    Autebert, Claire
    Caloz, Misael
    Perrenoud, Matthieu
    Gras, Gaetan
    Bussieres, Felix
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (19)