Duality and multiplicative stochastic processes on quantum groups

被引:8
作者
Feinsilver, P
Franz, U
Schott, R
机构
[1] UNIV NANCY 1, CRIN, F-54506 VANDOEUVRE LES NANCY, FRANCE
[2] SO ILLINOIS UNIV, DEPT MATH, CARBONDALE, IL 62901 USA
[3] TECH UNIV CLAUSTHAL, ASI, D-38678 CLAUSTHAL ZELLERFELD, GERMANY
[4] UNIV NANCY 1, DEPT MATH, F-54506 VANDOEUVRE LES NANCY, FRANCE
关键词
quantum groups; Appell systems; stochastic product integral;
D O I
10.1023/A:1022618114810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An analogue of McKean's stochastic product integral is introduced and used to define stochastic processes with independent increments on quantum groups. The explicit form of the dual pairing (q-analogue of the exponential map) is calculated for a large class of quantum groups. The constructed processes are shown to satisfy generalized Feynman-Kac type formulas, and polynomial solutions of associated evolution equations are introduced in the form of Appell systems. Explicit calculations for Gauss and Poisson processes complete the presentation.
引用
收藏
页码:795 / 818
页数:24
相关论文
共 25 条
[1]   QUANTUM INDEPENDENT INCREMENT PROCESSES ON SUPERALGEBRAS [J].
ACCARDI, L ;
SCHURMANN, M ;
VONWALDENFELS, W .
MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (04) :451-477
[2]  
[Anonymous], 1969, Probability and Mathematical Statistics
[3]  
[Anonymous], 1987, P INT C MATH BERK 19
[4]   EXPONENTIAL MAPPING FOR NONSEMISIMPLE QUANTUM GROUPS [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
PERENA, CM ;
SORACE, E ;
TARLINI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1307-1315
[5]   DUALITY FOR MULTIPARAMETRIC QUANTUM GL(N) [J].
DOBREV, VK ;
PARASHAR, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :6991-7002
[6]  
DOEBNER HD, 1991, SPRINGER LECT NOTES, V370
[7]  
FEINSILVER P, 1989, LECT NOTES MATH, V1391, P59
[8]  
FEINSILVER P, 1989, LECT NOTES MATH, V1379, P75
[9]  
FEINSILVER P, 1987, C P PROB THEOR VECT
[10]  
Feinsilver P., 1992, J THEORET PROBAB, V5, P251