Animal Models and Integrated Nested Laplace Approximations

被引:44
作者
Holand, Anna Marie [1 ]
Steinsland, Ingelin [2 ]
Martino, Sara [2 ]
Jensen, Henrik [1 ]
机构
[1] NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway
[2] NTNU, Dept Math Sci, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway
来源
G3-GENES GENOMES GENETICS | 2013年 / 3卷 / 08期
关键词
additive genetic models; approximate Bayesian inference; heritability; quantitative genetics; AnimalINLA; LINEAR MIXED MODELS; BAYESIAN-INFERENCE; GENETIC-ANALYSIS; HERITABILITY; SELECTION; POISSON; FITNESS; TRAITS; PARAMETERS; FRAMEWORK;
D O I
10.1534/g3.113.006700
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA.
引用
收藏
页码:1241 / 1251
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 1998, Genetics and Analysis of Quantitative Traits (Sinauer)
[2]  
[Anonymous], 2004, Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models
[3]   Generalized linear mixed models: a practical guide for ecology and evolution [J].
Bolker, Benjamin M. ;
Brooks, Mollie E. ;
Clark, Connie J. ;
Geange, Shane W. ;
Poulsen, John R. ;
Stevens, M. Henry H. ;
White, Jada-Simone S. .
TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (03) :127-135
[4]  
DEMPSTER ER, 1950, GENETICS, V35, P212
[5]   Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models [J].
Eidsvik, Jo ;
Martino, Sara ;
Rue, Havard .
SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) :1-22
[6]   Sexually antagonistic genetic variation for fitness in red deer [J].
Foerster, Katharina ;
Coulson, Tim ;
Sheldon, Ben C. ;
Pemberton, Josephine M. ;
Clutton-Brock, Tim H. ;
Kruuk, Loeske E. B. .
NATURE, 2007, 447 (7148) :1107-U9
[7]   Bayesian inference for generalized linear mixed models [J].
Fong, Youyi ;
Rue, Havard ;
Wakefield, Jon .
BIOSTATISTICS, 2010, 11 (03) :397-412
[8]   GENETIC EVALUATION OF TRAITS DISTRIBUTED AS POISSON-BINOMIAL WITH REFERENCE TO REPRODUCTIVE CHARACTERS [J].
FOULLEY, JL ;
GIANOLA, D ;
IM, S .
THEORETICAL AND APPLIED GENETICS, 1987, 73 (06) :870-877
[9]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[10]   BAYESIAN METHODS IN ANIMAL BREEDING THEORY [J].
GIANOLA, D ;
FERNANDO, RL .
JOURNAL OF ANIMAL SCIENCE, 1986, 63 (01) :217-244