Filter factor analysis of scaled gradient methods for linear least squares

被引:0
作者
Porta, Federica [1 ]
Cornelio, Anastasia [1 ]
Zanni, Luca [1 ]
Prato, Marco [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Phys Comp Sci & Math, Modena, Italy
来源
3RD INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP 2013) | 2013年 / 464卷
关键词
RESTORATION;
D O I
10.1088/1742-6596/464/1/012006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A typical way to compute a meaningful solution of a linear least squares problem involves the introduction of a filter factors array, whose aim is to avoid noise amplification due to the presence of small singular values. Beyond the classical direct regularization approaches, iterative gradient methods can be thought as filtering methods, due to their typical capability to recover the desired components of the true solution at the first iterations. For an iterative method, regularization is achieved by stopping the procedure before the noise introduces artifacts, making the iteration number playing the role of the regularization parameter. In this paper we want to investigate the filtering and regularizing effects of some first-order algorithms, showing in particular which benefits can be gained in recovering the filters of the true solution by means of a suitable scaling matrix.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 2006, Deblurring images: matrices, spectra, and filtering
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]  
Bertero M., 1998, INTRO INVERSE PROBLE
[4]   Scaling techniques for gradient projection-type methods in astronomical image deblurring [J].
Bonettini, S. ;
Landi, G. ;
Piccolomini, E. Loli ;
Zanni, L. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (01) :9-29
[5]   A scaled gradient projection method for constrained image deblurring [J].
Bonettini, S. ;
Zanella, R. ;
Zanni, L. .
INVERSE PROBLEMS, 2009, 25 (01)
[6]  
Cauchy A-L., 1847, Comp. Rend. Sci. Paris, V25, P536
[7]   Alternate minimization gradient method [J].
Dai, YH ;
Yuan, YX .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) :377-393
[8]  
Dai YH, 2006, IMA J NUMER ANAL, V26, P604, DOI [10.1093/imanum/drl006, 10.1093/imanum/dri006]
[9]   AN ITERATIVE IMAGE SPACE RECONSTRUCTION ALGORITHM SUITABLE FOR VOLUME ECT [J].
DAUBEWITHERSPOON, ME ;
MUEHLLEHNER, G .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1986, 5 (02) :61-66
[10]  
Frassoldati G, 2008, J IND MANAG OPTIM, V4, P299