Fully integrated four-channel wavelength-division multiplexed QKD receiver

被引:13
作者
Beutel, Fabian [1 ,2 ,3 ]
Brueckerhoff-Plueckelmann, Frank [1 ,2 ]
Gehring, Helge [1 ,2 ]
Kovalyuk, Vadim [4 ,5 ]
Zolotov, Philipp [5 ,6 ]
Goltsman, Gregory [4 ,5 ,6 ]
Pernice, Wolfram H. P. [1 ,2 ,7 ,8 ]
机构
[1] Univ Munster, Inst Phys, D-48149 Munster, Germany
[2] Ctr Nanotechnol CeNTech, D-48149 Munster, Germany
[3] Pixel Photon GmbH, Heisenbergstr 11, D-48149 Munster, Germany
[4] Moscow Pedag State Univ, Dept Phys, Moscow, Russia
[5] Russian Quantum Ctr, Moscow 143025, Russia
[6] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[7] Ctr Soft Nanosci SoN, D-48149 Munster, Germany
[8] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
来源
OPTICA | 2022年 / 9卷 / 10期
基金
欧盟地平线“2020”; 俄罗斯科学基金会; 欧洲研究理事会;
关键词
QUANTUM; SYSTEM;
D O I
10.1364/OPTICA.468982
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution(QKD) enables secure communication even in the presence of advanced quantum computers. However, scaling up discrete-variable QKD to high key rates remains a challenge due to the lossy nature of quantum communication channels and the use of weak coherent states. Photonic integration and massive parallelization are crucial steps toward the goal of high-throughput secret-key distribution. We present a fully integrated photonic chip on silicon nitride featuring a four-channel wavelength-division demultiplexed QKD receiver circuit including state-of-the-art wave guide-integrated superconducting nano wire single-photon detectors (SNSPDs). With a proof-of-principle setup operated at a clock rate of 3.35 GHz, we achieve a total secret-key rate of up to 12.17 Mbit/s at 10 dB channel attenuation with low detector-induced error rates. The QKD receiver architecture is massively scalable and constitutes a foundation for high-rate many-channel QKD transmission. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 38 条
[21]   Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography [J].
Milicevic, Mario ;
Feng, Chen ;
Zhang, Lei M. ;
Gulak, P. Glenn .
NPJ QUANTUM INFORMATION, 2018, 4
[22]   Recent advances on integrated quantum communications [J].
Orieux, Adeline ;
Diamanti, Eleni .
JOURNAL OF OPTICS, 2016, 18 (08)
[23]   High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits [J].
Pernice, W. H. P. ;
Schuck, C. ;
Minaeva, O. ;
Li, M. ;
Goltsman, G. N. ;
Sergienko, A. V. ;
Tang, H. X. .
NATURE COMMUNICATIONS, 2012, 3
[24]   Advances in quantum cryptography [J].
Pirandola, S. ;
Andersen, U. L. ;
Banchi, L. ;
Berta, M. ;
Bunandar, D. ;
Colbeck, R. ;
Englund, D. ;
Gehring, T. ;
Lupo, C. ;
Ottaviani, C. ;
Pereira, J. L. ;
Razavi, M. ;
Shaari, J. Shamsul ;
Tomamichel, M. ;
Usenko, V. C. ;
Vallone, G. ;
Villoresi, P. ;
Wallden, P. .
ADVANCES IN OPTICS AND PHOTONICS, 2020, 12 (04) :1012-1236
[25]  
Price AB, 2018, CONF LASER ELECTR
[26]   Security proof for a simplified Bennett-Brassard 1984 quantum-key-distribution protocol [J].
Rusca, Davide ;
Boaron, Alberto ;
Curty, Marcos ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW A, 2018, 98 (05)
[27]   Finite-key analysis for the 1-decoy state QKD protocol [J].
Rusca, Davide ;
Boaron, Alberto ;
Grunenfelder, Fadri ;
Martin, Anthony ;
Zbinden, Hugo .
APPLIED PHYSICS LETTERS, 2018, 112 (17)
[28]   The security of practical quantum key distribution [J].
Scarani, Valerio ;
Bechmann-Pasquinucci, Helle ;
Cerf, Nicolas J. ;
Dusek, Miloslav ;
Luetkenhaus, Norbert ;
Peev, Momtchil .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1301-1350
[29]   Chip-based measurement-device-independent quantum key distribution [J].
Semenenko, Henry ;
Sibson, Philip ;
Hart, Andy ;
Thompson, Mark G. ;
Rarity, John G. ;
Erven, Chris .
OPTICA, 2020, 7 (03) :238-242
[30]   COMMUNICATION THEORY OF SECRECY SYSTEMS [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1949, 28 (04) :656-715