Fully integrated four-channel wavelength-division multiplexed QKD receiver

被引:13
作者
Beutel, Fabian [1 ,2 ,3 ]
Brueckerhoff-Plueckelmann, Frank [1 ,2 ]
Gehring, Helge [1 ,2 ]
Kovalyuk, Vadim [4 ,5 ]
Zolotov, Philipp [5 ,6 ]
Goltsman, Gregory [4 ,5 ,6 ]
Pernice, Wolfram H. P. [1 ,2 ,7 ,8 ]
机构
[1] Univ Munster, Inst Phys, D-48149 Munster, Germany
[2] Ctr Nanotechnol CeNTech, D-48149 Munster, Germany
[3] Pixel Photon GmbH, Heisenbergstr 11, D-48149 Munster, Germany
[4] Moscow Pedag State Univ, Dept Phys, Moscow, Russia
[5] Russian Quantum Ctr, Moscow 143025, Russia
[6] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[7] Ctr Soft Nanosci SoN, D-48149 Munster, Germany
[8] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
来源
OPTICA | 2022年 / 9卷 / 10期
基金
欧盟地平线“2020”; 俄罗斯科学基金会; 欧洲研究理事会;
关键词
QUANTUM; SYSTEM;
D O I
10.1364/OPTICA.468982
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution(QKD) enables secure communication even in the presence of advanced quantum computers. However, scaling up discrete-variable QKD to high key rates remains a challenge due to the lossy nature of quantum communication channels and the use of weak coherent states. Photonic integration and massive parallelization are crucial steps toward the goal of high-throughput secret-key distribution. We present a fully integrated photonic chip on silicon nitride featuring a four-channel wavelength-division demultiplexed QKD receiver circuit including state-of-the-art wave guide-integrated superconducting nano wire single-photon detectors (SNSPDs). With a proof-of-principle setup operated at a clock rate of 3.35 GHz, we achieve a total secret-key rate of up to 12.17 Mbit/s at 10 dB channel attenuation with low detector-induced error rates. The QKD receiver architecture is massively scalable and constitutes a foundation for high-rate many-channel QKD transmission. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 38 条
  • [1] Microring-resonator-based add-drop filters in SiN: fabrication and analysis
    Barwicz, T
    Popovic, MA
    Rakich, PT
    Watts, MR
    Haus, HA
    Ippen, EP
    Smith, HI
    [J]. OPTICS EXPRESS, 2004, 12 (07): : 1437 - 1442
  • [2] Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Detector-integrated on-chip QKD receiver for GHz clock rates
    Beutel, Fabian
    Gehring, Helge
    Wolff, Martin A.
    Schuck, Carsten
    Pernice, Wolfram
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [4] Simple 2.5 GHz time-bin quantum key distribution
    Boaron, Alberto
    Korzh, Boris
    Houlmann, Raphael
    Boso, Gianluca
    Rusca, Davide
    Gray, Stuart
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (17)
  • [5] Silicon microring resonators
    Bogaerts, Wim
    De Heyn, Peter
    Van Vaerenbergh, Thomas
    De Vos, Katrien
    Selvaraja, Shankar Kumar
    Claes, Tom
    Dumon, Pieter
    Bienstman, Peter
    Van Thourhout, Dries
    Baets, Roel
    [J]. LASER & PHOTONICS REVIEWS, 2012, 6 (01) : 47 - 73
  • [6] Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers
    Brueckerhoff-Plueckelmann, Frank
    Feldmann, Johannes
    Gehring, Helge
    Zhou, Wen
    Wright, C. David
    Bhaskaran, Harish
    Pernice, Wolfram
    [J]. NANOPHOTONICS, 2022, 11 (17) : 4063 - 4072
  • [7] Bunandar D., 2018, APS MARCH M 2018
  • [8] Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber
    Choi, Iris
    Zhou, Yu Rong
    Dynes, James F.
    Yuan, Zhiliang
    Klar, Andreas
    Sharpe, Andrew
    Plews, Alan
    Lucamarini, Marco
    Radig, Christian
    Neubert, Joerg
    Griesser, Helmut
    Eiselt, Michael
    Chunnilall, Christopher
    Lepert, Guillaume
    Sinclair, Alastair
    Elbers, Joerg-Peter
    Lord, Andrew
    Shields, Andrew
    [J]. OPTICS EXPRESS, 2014, 22 (19): : 23121 - 23128
  • [9] High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits
    Ding, Yunhong
    Bacco, Davide
    Dalgaard, Kjeld
    Cai, Xinlun
    Zhou, Xiaoqi
    Rottwitt, Karsten
    Oxenlowe, Leif Katsuo
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [10] Stability of high bit rate quantum key distribution on installed fiber
    Dynes, J. F.
    Choi, I.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Fujiwara, M.
    Sasaki, M.
    Shields, A. J.
    [J]. OPTICS EXPRESS, 2012, 20 (15): : 16339 - 16347