The square terms in Lucas sequences

被引:63
作者
Ribenboim, P
McDaniel, WL
机构
[1] QUEENS UNIV,DEPT MATH,KINGSTON,ON K7L 3N6,CANADA
[2] UNIV MISSOURI,DEPT MATH,ST LOUIS,MO 63121
关键词
D O I
10.1006/jnth.1996.0068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {U-n(P,Q)} and {V-n(P,Q)} denote the Lucas sequence and companion Lucas sequence, respectively, with parameters P and Q. For all odd relatively prime values of P and Q such that D = P-2 - 4Q is positive. we determine all indices n such that U-n(P,Q), 2U(n)(P,Q), V-n(P,Q) or 2 V-n(P,Q) is a square. The condition D > 0 assures that the result holds for all such sequences whose terms are positive. (C) 1996 Academic Press, Inc.
引用
收藏
页码:104 / 123
页数:20
相关论文
共 18 条
[1]  
ALFRED U, 1964, FIBONACCI QUART, V2, P11
[2]  
Apostol T., 1998, Introduction to Analytic Number Theory
[3]  
BURR JHE, 1963, AM MATH SOC NOTICES, V10, P11
[4]  
Cohn J.H.E., 1965, P GLASGOW MATH ASSOC, V7, P24
[5]   FIVE DIOPHANTINE EQUATIONS [J].
COHN, JHE .
MATHEMATICA SCANDINAVICA, 1967, 21 (01) :61-&
[6]   SQUARES IN SOME RECURRENT SEQUENCES [J].
COHN, JHE .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (03) :631-&
[7]  
COHN JHE, 1966, P LOND MATH SOC, V16, P153
[8]  
Cohn JHE, 1964, J LOND MATH SOC, V39, P537, DOI [DOI 10.1112/JLMS/S1-39.1.537, 10.1112/jlms/s1-39.1.537]
[9]  
Cohn JHE., 1964, Fibonacci Quart, V2, P109
[10]  
KO C, 1965, SCI SINICA, V14, P457