The GALAH Survey: non-LTE departure coefficients for large spectroscopic surveys

被引:83
作者
Amarsi, A. M. [1 ]
Lind, K. [2 ,3 ]
Osorio, Y. [4 ,5 ]
Nordlander, T. [6 ]
Bergemann, M. [3 ]
Reggiani, H. [8 ]
Wang, E. X. [6 ,7 ]
Buder, S. [6 ,7 ]
Asplund, M. [6 ,7 ]
Barklem, P. S.
Wehrhahn, A. [9 ]
Skuladottir, A. [10 ,11 ]
Kobayashi, C. [7 ,12 ]
Karakas, A. I. [7 ,13 ]
Gao, X. D.
Bland-Hawthorn, J. [7 ,14 ]
De Silva, G. M. [15 ]
Kos, J. [16 ]
Lewis, G. F.
Martell, S. L. [17 ]
Sharma, S.
Simpson, J. D. [17 ]
Zucker, D. B. [18 ,19 ]
Cotar, K.
Horner, J. [20 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Theoret Astrophys, Box 516, SE-75120 Uppsala, Sweden
[2] Stockholm Univ, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden
[3] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[4] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Tenerife, Spain
[5] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain
[6] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[7] ARC Ctr Excellence All Sky Astrophys 3 Dimens AS, Perth, WA, Australia
[8] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
[9] Uppsala Univ, Dept Phys & Astron, Observat Astrophys, Box 516, S-75120 Uppsala, Sweden
[10] Univ Firenze, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[11] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[12] Univ Hertfordshire, Dept Phys Astron & Math, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England
[13] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[14] Univ Sydney, Sch Phys, Sydney Inst Astron, A28, Sydney, NSW 2006, Australia
[15] Macquarie Univ, Australian Astron Opt, 105 Delhi Rd, N Ryde 211, Australia
[16] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[17] UNSW, Sch Phys, Sydney, NSW 2052, Australia
[18] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[19] Macquarie Univ, Res Ctr Astron Astrophys & Astrophoton, Sydney, NSW 2109, Australia
[20] Univ Southern Queensland, Ctr Astrophys, Toowoomba, Qld 4350, Australia
基金
澳大利亚研究理事会; 英国科学技术设施理事会; 瑞典研究理事会;
关键词
atomic processes; radiative transfer; line: formation; stars: abundances; stars: atmospheres; Galaxy: abundances; LATE-TYPE STARS; ATOM-ATOM COLLISIONS; FREE-ELECTRON MODEL; TO-LIMB VARIATION; LINE FORMATION; OSCILLATOR-STRENGTHS; TRANSITION-PROBABILITIES; ASTROPHYSICAL INTEREST; RADIATIVE-TRANSFER; CROSS-SECTION;
D O I
10.1051/0004-6361/202038650
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 <= T-eff/K <= 8000, - 0.5 <= log g/cm s(-2) <= 5.5, and - 5 <= [Fe/H] <= 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys.
引用
收藏
页数:18
相关论文
共 151 条
[1]   VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES [J].
Aguirre, V. Silva ;
Casagrande, L. ;
Basu, S. ;
Campante, T. L. ;
Chaplin, W. J. ;
Huber, D. ;
Miglio, A. ;
Serenelli, A. M. ;
Ballot, J. ;
Bedding, T. R. ;
Christensen-Dalsgaard, J. ;
Creevey, O. L. ;
Elsworth, Y. ;
Garcia, R. A. ;
Gilliland, R. L. ;
Hekker, S. ;
Kjeldsen, H. ;
Mathur, S. ;
Metcalfe, T. S. ;
Monteiro, M. J. P. F. G. ;
Mosser, B. ;
Pinsonneault, M. H. ;
Stello, D. ;
Weiss, A. ;
Tenenbaum, P. ;
Twicken, J. D. ;
Uddin, K. .
ASTROPHYSICAL JOURNAL, 2012, 757 (01)
[2]   The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra [J].
Ahumada, Romina ;
Allende Prieto, Carlos ;
Almeida, Andres ;
Anders, Friedrich ;
Anderson, Scott F. ;
Andrews, Brett H. ;
Anguiano, Borja ;
Arcodia, Riccardo ;
Armengaud, Eric ;
Aubert, Marie ;
Avila, Santiago ;
Avila-Reese, Vladimir ;
Badenes, Carles ;
Balland, Christophe ;
Barger, Kat ;
Barrera-Ballesteros, Jorge K. ;
Basu, Sarbani ;
Bautista, Julian ;
Beaton, Rachael L. ;
Beers, Timothy C. ;
Benavides, B. Izamar T. ;
Bender, Chad F. ;
Bernardi, Mariangela ;
Bershady, Matthew ;
Beutler, Florian ;
Bidin, Christian Moni ;
Bird, Jonathan ;
Bizyaev, Dmitry ;
Blanc, Guillermo A. ;
Blanton, Michael R. ;
Boquien, Mederic ;
Borissova, Jura ;
Bovy, Jo ;
Brandt, W. N. ;
Brinkmann, Jonathan ;
Brownstein, Joel R. ;
Bundy, Kevin ;
Bureau, Martin ;
Burgasser, Adam ;
Burtin, Etienne ;
Cano-Diaz, Mariana ;
Capasso, Raffaella ;
Cappellari, Michele ;
Carrera, Ricardo ;
Chabanier, Solene ;
Chaplin, William ;
Chapman, Michael ;
Cherinka, Brian ;
Chiappini, Cristina ;
Choi, Peter Doohyun .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 249 (01)
[3]   Carbon, oxygen, and iron abundances in disk and halo stars Implications of 3D non-LTE spectral line formation [J].
Amarsi, A. M. ;
Nissen, P. E. ;
Skuladottir, A. .
ASTRONOMY & ASTROPHYSICS, 2019, 630
[4]   3D non-LTE line formation of neutral carbon in the Sun [J].
Amarsi, A. M. ;
Barklem, P. S. ;
Collet, R. ;
Grevesse, N. ;
Asplund, M. .
ASTRONOMY & ASTROPHYSICS, 2019, 624
[5]   Inelastic O plus H collisions and the O I 777 nm solar centre-to-limb variation [J].
Amarsi, A. M. ;
Barklem, P. S. ;
Asplund, M. ;
Collet, R. ;
Zatsarinny, O. .
ASTRONOMY & ASTROPHYSICS, 2018, 616
[6]   The solar silicon abundance based on 3D non-LTE calculations [J].
Amarsi, A. M. ;
Asplund, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (01) :264-273
[7]   Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars [J].
Amarsi, A. M. ;
Lind, K. ;
Asplund, M. ;
Barklem, P. S. ;
Collet, R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (02) :1518-1533
[8]   Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres [J].
Amarsi, A. M. ;
Asplund, M. ;
Collet, R. ;
Leenaarts, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (04) :3735-3751
[9]  
Amarsi A.M., 2020, A A, V636, pA120
[10]   NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars [J].
Andrievsky, S. M. ;
Spite, M. ;
Korotin, S. A. ;
Spite, F. ;
Bonifacio, P. ;
Cayrel, R. ;
Hill, V. ;
Francois, P. .
ASTRONOMY & ASTROPHYSICS, 2008, 481 (02) :481-487