Global Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation

被引:69
|
作者
Constantin, Peter [1 ]
Iyer, Gautam [2 ]
Wu, Jiahong [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
blow up; global regularity; quasi-geostrophic equations; nonlocal equations;
D O I
10.1512/iumj.2008.57.3629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the modified quasi-geostrophic equation partial derivative(t)theta + (u . del)theta + kappa Lambda(alpha theta) = 0 u = Lambda R-alpha-1(perpendicular to)theta, with kappa > 0, alpha is an element of (0,1] and theta(0) is an element of L-2(R-2). We remark that the extra Lambda(alpha-1) is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence and regularity of strong solutions to this system.
引用
收藏
页码:2681 / 2692
页数:12
相关论文
共 50 条