ERROR ANALYSIS FOR A FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS

被引:70
作者
May, S. [1 ]
Rannacher, R. [2 ]
Vexler, B. [3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[3] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
基金
奥地利科学基金会;
关键词
Dirichlet boundary control; finite elements; a priori error estimates; LIPSCHITZ-DOMAINS; EQUATIONS; SPACES;
D O I
10.1137/080735734
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses L-2 controls and a "very weak" formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation, we derive a priori error estimates of optimal order, which are confirmed by numerical experiments. The proofs employ duality arguments and known results from the L-p error analysis for the finite element Dirichlet projection.
引用
收藏
页码:2585 / 2611
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 2007, MATH THEORY FINITE E
[3]  
[Anonymous], 2010, MATH SURVEYS MONOGR
[4]  
Becker R., 2006, GASCOIGNE 3D HIGH PE
[5]  
Becker R., 2006, RODOBO A C OPTIMIZAT
[7]   The stability in Ws,p(Γ) spaces of L2-projections on some convex sets [J].
Casas, E ;
Raymond, JP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (02) :117-137
[8]   Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations [J].
Casas, Eduardo ;
Raymond, Jean-Pierre .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1586-1611
[9]   PENALIZATION OF DIRICHLET OPTIMAL CONTROL PROBLEMS [J].
Casas, Eduardo ;
Mateos, Mariano ;
Raymond, Jean-Pierre .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (04) :782-809
[10]  
CIARLET P. G., 2002, Classics in Appl. Math., V40