On Graded Nearness of Sets

被引:2
作者
Gomolinska, Anna [1 ]
Wolski, Marcin [2 ]
机构
[1] Bialystok Univ, Inst Math, PL-15267 Bialystok, Poland
[2] Marie Curie Sklodowska Univ, Dept Log & Methodol Sci, PL-20031 Lublin, Poland
关键词
nearness of sets; topological point-to-set nearness; inclusion function; rough approximation; granular computing; ROUGH; SYSTEMS;
D O I
10.3233/FI-2012-739
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this article we present three inclusion functions which characterise the nearness relation between finite sets of objects defined in line with J. F. Peters, A. Skowron, and J. Stepaniuk [26]. By means of these functions we extend the notion of nearness to the graded case where one can measure the degree to which one set is near to another one.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 1997, ADV MACHINE INTELLIG
[2]  
[Anonymous], 1952, MAT SB
[3]  
[Anonymous], HDB GRANULAR COMPUTI
[4]  
Arkhangel'skii A. V., 1990, GEN TOPOLOGY
[5]  
Drwal G., 1998, P 7 INT S INT INF SY, P392
[6]  
Gomolinska A, 2007, LECT NOTES ARTIF INT, V4585, P142, DOI 10.1007/978-3-540-73451-2_16
[7]   A Logic-Algebraic Approach to Graded Inclusion [J].
Gomolinska, Anna .
FUNDAMENTA INFORMATICAE, 2011, 109 (03) :265-279
[8]  
Gomolinska A, 2009, LECT NOTES COMPUT SC, V5656, P117, DOI 10.1007/978-3-642-03281-3_4
[9]  
Gomolinska A, 2008, LECT NOTES COMPUT SC, V5390, P35, DOI 10.1007/978-3-540-89876-4_3
[10]  
Greco S, 2007, LECT NOTES COMPUT SC, V4400, P36