EDGE-PROMOTING ADAPTIVE BAYESIAN EXPERIMENTAL DESIGN FOR X-RAY IMAGING

被引:7
作者
Helin, Tapio [1 ]
Hyvonen, Nuutti [2 ]
Puska, Juha-Pekka [2 ]
机构
[1] LUT Univ, Sch Engn Sci, Lappeenranta 53851, Finland
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Key words; X-ray tomography; optimal projections; Bayesian experimental design; A-optimality; D-optimality; adaptivity; edge-promoting prior; lagged diffusivity; EXPECTED INFORMATION GAINS; LINEAR INVERSE PROBLEMS; A-OPTIMAL DESIGN; COMPUTED-TOMOGRAPHY; RECONSTRUCTION; CONVERGENCE;
D O I
10.1137/21M1409330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation--type reconstruction of the absorption inside the imaged body via lagged diffusiv-ity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains informa-tion on the location of edges in the posterior mean. The next projection geometry is then chosen through A-or D-optimal Bayesian design, which corresponds to minimizing the trace or the deter-minant of the updated posterior covariance matrix that accounts for the new projection. Two-and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.
引用
收藏
页码:B506 / B530
页数:25
相关论文
共 57 条
  • [11] Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems
    Attia, Ahmed
    Alexanderian, Alen
    Saibaba, Arvind K.
    [J]. INVERSE PROBLEMS, 2018, 34 (09)
  • [12] BARDSLEY J. M, 2018, COMPUT SCI ENGRG, V19
  • [13] Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain
    Beck, Joakim
    Dia, Ben Mansour
    Espath, Luis F. R.
    Long, Quan
    Tempone, Raul
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 334 : 523 - 553
  • [14] Braess D., 1997, FINITE ELEMENTS, DOI 10.1007/978-3-662-07233-2
  • [15] Sequentially optimized projections in x-ray imaging *
    Burger, M.
    Hauptmann, A.
    Helin, T.
    Hyvonen, N.
    Puska, J. P.
    [J]. INVERSE PROBLEMS, 2021, 37 (07)
  • [16] Calvetti D., 2007, An introduction to Bayesian scientific computing: ten lectures on subjective computing
  • [17] Hypermodels in the Bayesian imaging framework
    Calvetti, Daniela
    Somersalo, Erkki
    [J]. INVERSE PROBLEMS, 2008, 24 (03)
  • [18] Bayesian experimental design: A review
    Chaloner, K
    Verdinelli, I
    [J]. STATISTICAL SCIENCE, 1995, 10 (03) : 273 - 304
  • [19] On the convergence of the lagged diffusivity fixed point method in total variation image restoration
    Chan, TF
    Mulet, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 354 - 367
  • [20] A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem
    Crestel, Benjamin
    Alexanderian, Alen
    Stadler, Georg
    Ghattas, Omar
    [J]. INVERSE PROBLEMS, 2017, 33 (07)