EDGE-PROMOTING ADAPTIVE BAYESIAN EXPERIMENTAL DESIGN FOR X-RAY IMAGING

被引:7
作者
Helin, Tapio [1 ]
Hyvonen, Nuutti [2 ]
Puska, Juha-Pekka [2 ]
机构
[1] LUT Univ, Sch Engn Sci, Lappeenranta 53851, Finland
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Key words; X-ray tomography; optimal projections; Bayesian experimental design; A-optimality; D-optimality; adaptivity; edge-promoting prior; lagged diffusivity; EXPECTED INFORMATION GAINS; LINEAR INVERSE PROBLEMS; A-OPTIMAL DESIGN; COMPUTED-TOMOGRAPHY; RECONSTRUCTION; CONVERGENCE;
D O I
10.1137/21M1409330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation--type reconstruction of the absorption inside the imaged body via lagged diffusiv-ity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains informa-tion on the location of edges in the posterior mean. The next projection geometry is then chosen through A-or D-optimal Bayesian design, which corresponds to minimizing the trace or the deter-minant of the updated posterior covariance matrix that accounts for the new projection. Two-and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.
引用
收藏
页码:B506 / B530
页数:25
相关论文
共 57 条
  • [1] Rates of contraction of posterior distributions based on p-exponential priors
    Agapiou, Sergios
    Dashti, Masoumeh
    Helin, Tapio
    [J]. BERNOULLI, 2021, 27 (03) : 1616 - 1642
  • [2] Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems
    Agapiou, Sergios
    Burger, Martin
    Dashti, Masoumeh
    Helin, Tapio
    [J]. INVERSE PROBLEMS, 2018, 34 (04)
  • [3] Optimal Design of Large-scale Bayesian Linear Inverse Problems Under Reducible Model Uncertainty: Good to Know What You Don't Know
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Sunseri, Isaac
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01) : 163 - 184
  • [4] Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: a review
    Alexanderian, Alen
    [J]. INVERSE PROBLEMS, 2021, 37 (04)
  • [5] EFFICIENT D-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS
    Alexanderian, Alen
    Saibaba, Arvind K.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A2956 - A2985
  • [6] On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions
    Alexanderian, Alen
    Gloor, Philip J.
    Ghattas, Omar
    [J]. BAYESIAN ANALYSIS, 2016, 11 (03): : 671 - 695
  • [7] A FAST AND SCALABLE METHOD FOR A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN NONLINEAR INVERSE PROBLEMS
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A243 - A272
  • [8] A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS WITH REGULARIZED l0-SPARSIFICATION
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) : A2122 - A2148
  • [9] Aretz-Nellesen N, 2020, Arxiv, DOI arXiv:2011.11391
  • [10] Iterated preconditioned LSQR method for inverse problems on unstructured grids
    Arridge, S. R.
    Betcke, M. M.
    Harhanen, L.
    [J]. INVERSE PROBLEMS, 2014, 30 (07)