Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems

被引:90
作者
Chen, Xi [1 ,2 ]
Liu, Yong-Chun [1 ,2 ]
Peng, Pai [1 ,2 ]
Zhi, Yanyan [1 ,2 ,3 ]
Xiao, Yun-Feng [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
中国国家自然科学基金;
关键词
QUANTUM GROUND-STATE; CAVITY OPTOMECHANICS; OSCILLATOR; MOTION; LIMIT; MODE;
D O I
10.1103/PhysRevA.92.033841
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cooling macroscopic objects is of importance for both fundamental and applied physics. Here we study the optomechanical cooling in a hybrid system which consists of a cloud of atoms coupled to a cavity optomechanical system. On one hand, the asymmetric Fano or electromagnetically induced transparency resonance is explored and the steady-state cooling limits of resonators with frequency omega(m) are analytically obtained, permitting ground-state cooling of massive low-frequency resonators beyond the resolved sideband limit. On the other hand, due to the excitation-saturation effect, the validity of cooling requires the number of atoms to be much larger than the number of steady-state excitations, which is proportional to omega(-2)(m). Thus, this limitation plays a minor role in cooling higher-frequency resonators, but becomes important for macroscopic lower-frequency resonators. Under such limitation on the number of atoms, the optimal parameters are quantified. Our study can be a guideline for both theoretical and experimental study of cooling macroscopic objects in atom-optomechanical hybrid systems.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[2]   Hybrid optomechanical cooling by atomic Λ systems [J].
Bariani, F. ;
Singh, S. ;
Buchmann, L. F. ;
Vengalattore, M. ;
Meystre, P. .
PHYSICAL REVIEW A, 2014, 90 (03)
[3]   Coherent control and feedback cooling in a remotely coupled hybrid atom-optomechanical system [J].
Bennett, James S. ;
Madsen, Lars S. ;
Baker, Mark ;
Rubinsztein-Dunlop, Halina ;
Bowen, Warwick P. .
NEW JOURNAL OF PHYSICS, 2014, 16
[4]   Effective Field Theory Approach to Gravitationally Induced Decoherence [J].
Blencowe, M. P. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[5]   Optical control of a quantum rotor [J].
Buchmann, L. F. ;
Jing, H. ;
Raman, C. ;
Meystre, P. .
PHYSICAL REVIEW A, 2013, 87 (03)
[6]   Realization of an Optomechanical Interface Between Ultracold Atoms and a Membrane [J].
Camerer, Stephan ;
Korppi, Maria ;
Joeckel, Andreas ;
Hunger, David ;
Haensch, Theodor W. ;
Treutlein, Philipp .
PHYSICAL REVIEW LETTERS, 2011, 107 (22)
[7]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[8]   Hybrid cavity mechanics with doped systems [J].
Dantan, Aurelien ;
Nair, Bhagya ;
Pupillo, Guido ;
Genes, Claudiu .
PHYSICAL REVIEW A, 2014, 90 (03)
[9]   Optomechanical Dark Mode [J].
Dong, Chunhua ;
Fiore, Victor ;
Kuzyk, Mark C. ;
Wang, Hailin .
SCIENCE, 2012, 338 (6114) :1609-1613
[10]   Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics [J].
Elste, Florian ;
Girvin, S. M. ;
Clerk, A. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)