The Bravyi-Kitaev transformation for quantum computation of electronic structure

被引:403
作者
Seeley, Jacob T. [1 ]
Richard, Martin J. [1 ]
Love, Peter J. [1 ]
机构
[1] Haverford Coll, Dept Phys, Haverford, PA 19041 USA
基金
美国国家科学基金会;
关键词
SIMULATIONS;
D O I
10.1063/1.4768229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 ( 2002); e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O( log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H-2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768229]
引用
收藏
页数:16
相关论文
共 32 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
[Anonymous], 2002, Phys. Rev. A, DOI DOI 10.1103/PHYSREVB.65.042101
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
[5]   Fermions without fermion fields [J].
Ball, RC .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[6]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[7]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   NMR Implementation of a Molecular Hydrogen Quantum Simulation with Adiabatic State Preparation [J].
Du, Jiangfeng ;
Xu, Nanyang ;
Peng, Xinhua ;
Wang, Pengfei ;
Wu, Sanfeng ;
Lu, Dawei .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[10]  
Dutta A., ARXIV10120653V1