Self-Configuring Robot Path Planning With Obstacle Avoidance via Deep Reinforcement Learning

被引:84
作者
Sangiovanni, Bianca [1 ]
Incremona, Gian Paolo [2 ]
Piastra, Marco [1 ]
Ferrara, Antonella [1 ]
机构
[1] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
IEEE CONTROL SYSTEMS LETTERS | 2021年 / 5卷 / 02期
关键词
Collision avoidance; Task analysis; Planning; Service robots; Robot kinematics; Aerospace electronics; Deep learning; path planning; robot control; collision avoidance;
D O I
10.1109/LCSYS.2020.3002852
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 2019, PyRep: Bringing V-REP to Deep Robot Learning
[2]  
[Anonymous], 2015, COMPUTER SCI
[3]  
[Anonymous], 2017, DATA EFFICIENT DEEP
[4]   Real-time 3D collision avoidance method for safe human and robot coexistence [J].
Balan, Lucian ;
Bone, Gary M. .
2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, :276-+
[5]  
Bicchi A., 2008, SPRINGER HDB ROBOTIC, V6, P1335, DOI DOI 10.1007/978-3-540-30301-5_58
[6]   Obstacle Modelling Oriented to Safe Motion Planning and Control for Planar Rigid Robot Manipulators [J].
Capisani, Luca Massimiliano ;
Facchinetti, Tullio ;
Ferrara, Antonella ;
Martinelli, Alessandro .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2013, 71 (02) :159-178
[7]  
De Luca A, 2012, P IEEE RAS-EMBS INT, P288, DOI 10.1109/BioRob.2012.6290917
[8]  
Deisenroth MP, 2012, ROBOTICS: SCIENCE AND SYSTEMS VII, P57
[9]  
Gu SX, 2016, PR MACH LEARN RES, V48
[10]  
Haarnoja T, 2018, IEEE INT CONF ROBOT, P6244