Multidimensional Hypergraph on Delineated Retinal Features for Pathological Myopia Task

被引:2
作者
Githinji, Bilha [1 ]
Shao, Lei [2 ]
An, Lin [1 ]
Zhang, Hao [1 ]
Li, Fang [1 ]
Dong, Li [2 ]
Ma, Lan [1 ]
Dong, Yuhan [1 ]
Zhang, Yongbing [1 ]
Wei, Wen B. [2 ]
Qin, Peiwu [1 ]
机构
[1] Tsinghua Shenzhen Int, Grad Sch, Shenzhen, Peoples R China
[2] Beijing Tongren Hosp, Beijing, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II | 2022年 / 13432卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Multidimensional hypergraph; Pathological myopia; Fundus; PREVALENCE;
D O I
10.1007/978-3-031-16434-7_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-threatening pathological myopia presents several lesions affecting various retinal anatomical structures. Detection approaches, however, either focus on one anatomical feature or are not intentional. This study uses hypergraph learning to modulate delineated retinal anatomical features from fundus images and capitalize on hidden associations between them. Experiments are conducted to assess prediction performance when targeting a particular anatomical trait versus using a mixture of select anatomical features, and in comparison to a ResNet34-based convolutional neural network classifier. Results indicate better prediction with hypergraph learning on a mix of the delineated features (F1 score 89.75%, AUC score 95.39%). A choroid tessellation segmentation method is also included.
引用
收藏
页码:550 / 559
页数:10
相关论文
共 21 条
[1]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[2]   Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks [J].
Cen, Ling-Ping ;
Ji, Jie ;
Lin, Jian-Wei ;
Ju, Si-Tong ;
Lin, Hong-Jie ;
Li, Tai-Ping ;
Wang, Yun ;
Yang, Jian-Feng ;
Liu, Yu-Fen ;
Tan, Shaoying ;
Tan, Li ;
Li, Dongjie ;
Wang, Yifan ;
Zheng, Dezhi ;
Xiong, Yongqun ;
Wu, Hanfu ;
Jiang, Jingjing ;
Wu, Zhenggen ;
Huang, Dingguo ;
Shi, Tingkun ;
Chen, Binyao ;
Yang, Jianling ;
Zhang, Xiaoling ;
Luo, Li ;
Huang, Chukai ;
Zhang, Guihua ;
Huang, Yuqiang ;
Ng, Tsz Kin ;
Chen, Haoyu ;
Chen, Weiqi ;
Pang, Chi Pui ;
Zhang, Mingzhi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]  
Dai S., 2020, IEEE INT CON MULTI, P1
[4]   Pathological Myopia Image Analysis Using Deep Learning [J].
Devda, Jaydeep ;
Eswari, R. .
2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 :239-244
[5]  
Feng Xia, 2021, IEEE Transactions on Artificial Intelligence, V2, P109, DOI [10.1109/tai.2021.3076021, 10.1109/TAI.2021.3076021]
[6]   Hypergraph Learning: Methods and Practices [J].
Gao, Yue ;
Zhang, Zizhao ;
Lin, Haojie ;
Zhao, Xibin ;
Du, Shaoyi ;
Zou, Changqing .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) :2548-2566
[7]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, DOI 10.48550/ARXIV.1512.03385, 10.48550/arXiv.1512.03385]
[8]  
Hoang QV, 2020, UPDATES ON MYOPIA: A CLINICAL PERSPECTIVE, P219, DOI 10.1007/978-981-13-8491-2_10
[9]   Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050 [J].
Holden, Brien A. ;
Fricke, Timothy R. ;
Wilson, David A. ;
Jong, Monica ;
Naidoo, Kovin S. ;
Sankaridurg, Padmaja ;
Wong, Tien Y. ;
Naduvilath, Thomas J. ;
Resnikoff, Serge .
OPHTHALMOLOGY, 2016, 123 (05) :1036-1042
[10]   Choroidal thickness estimation from colour fundus photographs by adaptive binarisation and deep learning, according to central serous chorioretinopathy status [J].
Komuku, Yuki ;
Ide, Atsuya ;
Fukuyama, Hisashi ;
Masumoto, Hiroki ;
Tabuchi, Hitoshi ;
Okadome, Takeshi ;
Gomi, Fumi .
SCIENTIFIC REPORTS, 2020, 10 (01)