Materials synthesis in a bubble

被引:71
作者
Barcikowski, Stephan [1 ,2 ]
Plech, Anton [3 ]
Suslick, Kenneth S. [4 ]
Vogel, Alfred [5 ]
机构
[1] Univ Duisburg Essen, Tech Chem 1, Essen, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, Essen, Germany
[3] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Karlsruhe, Germany
[4] Univ Illinois, Dept Chem, Urbana, IL USA
[5] Univ Lubeck, Inst Biomed Opt, Lubeck, Germany
基金
美国国家科学基金会;
关键词
PULSED-LASER ABLATION; INTERPARTICLE COLLISIONS DRIVEN; REDUCED GRAPHENE OXIDE; SHOCK-WAVE EMISSION; SONOCHEMICAL SYNTHESIS; CAVITATION BUBBLES; NANOPARTICLE PRODUCTIVITY; OPTICAL-BREAKDOWN; PLASMA FORMATION; LIGAND-FREE;
D O I
10.1557/mrs.2019.107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrasonic sonochemistry and pulsed laser ablation in liquids (LAL) are modern techniques for materials synthesis that are in different ways linked to the formation and collapse of cavitation bubbles. We provide an overview of the physics of laser-induced and acoustically driven bubble oscillations and then describe how the high pressures and temperatures associated with ablation and bubble collapse, as well as emitted shock waves, take part in material synthesis inside and around the bubble. Emphasis is placed on the mechanisms of sonochemical synthesis and modification, and on a step-by-step account of the events from laser ablation through interaction of ablation products with the surrounding liquid up to the modification or aggregation of particles within the bubble. Both sonochemistry and LALs yield nanostructured materials and colloidal nanoparticles with unique properties. The synthesis process has been demonstrated to be scalable.
引用
收藏
页码:382 / 391
页数:10
相关论文
共 128 条
[1]   A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation [J].
Abramova, Anna ;
Gedanken, Aharon ;
Popov, Viktor ;
Ooi, Ean-Hin ;
Mason, Timothy J. ;
Joyce, Eadaoin M. ;
Beddow, James ;
Perelshtein, Ilana ;
Bayazitov, Vadim .
MATERIALS LETTERS, 2013, 96 :121-124
[2]   Collapse and rebound of a laser-induced cavitation bubble [J].
Akhatov, I ;
Lindau, O ;
Topolnikov, A ;
Mettin, R ;
Vakhitova, N ;
Lauterborn, W .
PHYSICS OF FLUIDS, 2001, 13 (10) :2805-2819
[3]   Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method [J].
Alavi, Mohammad Amin ;
Morsali, Ali .
ULTRASONICS SONOCHEMISTRY, 2010, 17 (01) :132-138
[4]   Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method [J].
Alavi, Mohammad Amin ;
Morsali, Ali .
ULTRASONICS SONOCHEMISTRY, 2010, 17 (02) :441-446
[5]  
[Anonymous], 2013, CAVITATION BUBBLE DY, DOI DOI 10.1017/CBO9781107338760
[6]   A COLLOIDAL GOLD PREPARED WITH ULTRASONICS [J].
BAIGENT, CL ;
MULLER, G .
EXPERIENTIA, 1980, 36 (04) :472-473
[7]   Applications of Ultrasound to the Synthesis of Nanostructured Materials [J].
Bang, Jin Ho ;
Suslick, Kenneth S. .
ADVANCED MATERIALS, 2010, 22 (10) :1039-1059
[8]   Defining the unknowns of sonoluminescence [J].
Barber, BP ;
Hiller, RA ;
Lofstedt, R ;
Putterman, SJ ;
Weninger, KR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 281 (02) :65-143
[9]   Stable Products of Laser-Induced Breakdown of Aqueous Colloidal Solutions of Nanoparticles [J].
Barmina, E. V. ;
Gudkov, S. V. ;
Simakin, A. V. ;
Shafeev, G. A. .
JOURNAL OF LASER MICRO NANOENGINEERING, 2017, 12 (03) :254-257
[10]   COLLAPSE OF CAVITATION BUBBLES AND PRESSURES THEREBY PRODUCED AGAINST SOLID BOUNDARIES [J].
BENJAMIN, TB ;
ELLIS, AT .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 260 (1110) :221-&