Nonsmooth sparsity constrained optimization problems: optimality conditions

被引:3
作者
Movahedian, N. [1 ]
Nobakhtian, S. [1 ,2 ]
Sarabadan, M. [1 ]
机构
[1] Univ Isfahan, Dept Math, POB 81745-163, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Sparsity constrained optimization; Tangent cone; Normal cone; N-stationary; Optimality condition; Second-order tangent set;
D O I
10.1007/s11590-018-1310-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns a nonsmooth sparsity constrained optimization problem. We present first and second-order necessary and sufficient optimality conditions by using the concept of normal and tangent cones to the sparsity constraint set. Moreover, second-order tangent set to the sparsity constraint is described and then a new second-order necessary optimality condition is established. The results are illustrated by several examples.
引用
收藏
页码:1027 / 1038
页数:12
相关论文
共 22 条
[1]  
[Anonymous], NONSMOOTH ANAL CONTR
[2]  
[Anonymous], 1999, WAVELET TOUR SIGNAL
[3]  
[Anonymous], 989 TUCS
[4]  
[Anonymous], IMAGE COMPRESSION FU
[5]   Subdifferential properties of quasiconvex and pseudoconvex functions: Unified approach [J].
Aussel, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (01) :29-45
[6]  
Bahmani S, 2013, J MACH LEARN RES, V14, P807
[7]  
Bazaraa M., 1979, Nonlinear programming: theory and algorithms
[8]   SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION: OPTIMALITY CONDITIONS AND ALGORITHMS [J].
Beck, Amir ;
Eldar, Yonina C. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) :1480-1509
[9]  
Borwein J. M., 2000, Convex Analysis and Nonlinear Optimization. Theory and Examples, Canadian Mathematical Society
[10]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627