Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis

被引:76
作者
Dong, Shu [1 ,2 ,3 ]
Zhang, Chunyan [4 ]
Yue, Zhouying [2 ]
Zhang, Fengru [2 ]
Zhao, Hao [2 ,3 ]
Cheng, Qingqing [2 ]
Wang, Guoliang [2 ]
Xu, Jianfeng [2 ]
Chen, Chi [2 ]
Zou, Zhiqing [2 ]
Dou, Zhenlan [4 ]
Yang, Hui [1 ,2 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Key Lab Low Carbon Convers Sci & Engn, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[4] State Grid Shanghai Municipal Elect Power Co, Shanghai 200023, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
proton exchange membrane water electrolysis; tapered arrays structure; gradient catalytic layer; 3D interface structure; low Ir loading; OXYGEN EVOLUTION REACTION; DIFFUSION LAYERS; FUEL-CELLS; PERFORMANCE; ELECTROCATALYST;
D O I
10.1021/acs.nanolett.2c03461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Insufficient catalyst utilization, limited mass trans-port, and high ohmic resistance of the conventional membrane electrode assembly (MEA) lead to significant performance losses of proton exchange membrane water electrolysis (PEMWE). Herein we propose a novel ordered MEA based on anode with a 3D membrane/catalytic layer (CL) interface and gradient tapered arrays by the nanoimprinting method, confirmed by energy dispersive spectroscopy. Benefiting from the maximized triple-phase interface, rapid mass transport, and gradient CL by overall design, such an ordered structure with Ir loading of 0.2 mg cm-2 not only greatly increases the electrochemical active area by 4.2 times but also decreases the overpotentials of both mass transport and ohmic polarization by 13.9% and 8.7%, respectively, compared with conventional MEA with an Ir loading of 2 mg cm-2, thus ensuring a superior performance (1.801 V at 2 A cm-2) and good stability. This work provides a new strategy of designing MEA for high-performance PEMWE.
引用
收藏
页码:9434 / 9440
页数:7
相关论文
共 37 条
[1]   Tailoring the Membrane-Electrode Interface in PEM Fuel Cells: A Review and Perspective on Novel Engineering Approaches [J].
Breitwieser, Matthias ;
Klingele, Matthias ;
Vierrath, Severin ;
Zengerle, Roland ;
Thiele, Simon .
ADVANCED ENERGY MATERIALS, 2018, 8 (04)
[2]   Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers [J].
Buehler, Melanie ;
Hegge, Friedemann ;
Holzapfel, Peter ;
Bierling, Markus ;
Suermann, Michel ;
Vierrath, Severin ;
Thiele, Simon .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :26984-26995
[3]   Investigation of a polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition [J].
Cetinbas, Firat C. ;
Advani, Suresh G. ;
Prasad, Ajay K. .
JOURNAL OF POWER SOURCES, 2014, 270 :594-602
[4]   Nanoporous Iridium Nanosheets for Polymer Electrolyte Membrane Electrolysis [J].
Chatterjee, Swarnendu ;
Peng, Xiong ;
Intikhab, Saad ;
Zeng, Guosong ;
Kariuki, Nancy N. ;
Myers, Deborah J. ;
Danilovic, Nemanja ;
Snyder, Joshua .
ADVANCED ENERGY MATERIALS, 2021, 11 (34)
[5]   Advances in Oxygen Evolution Electrocatalysts for Proton Exchange Membrane Water Electrolyzers [J].
Chen, Zhichao ;
Guo, Lei ;
Pan, Lun ;
Yan, Tianqing ;
He, Zexing ;
Li, Yue ;
Shi, Chengxiang ;
Huang, Zhen-Feng ;
Zhang, Xiangwen ;
Zou, Ji-Jun .
ADVANCED ENERGY MATERIALS, 2022, 12 (14)
[6]   Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers [J].
Debe, M. K. ;
Hendricks, S. M. ;
Vernstrom, G. D. ;
Meyers, M. ;
Brostrom, M. ;
Stephens, M. ;
Chan, Q. ;
Willey, J. ;
Hamden, M. ;
Mittelsteadt, C. K. ;
Capuano, C. B. ;
Ayers, K. E. ;
Anderson, E. B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :K165-K176
[7]   Hierarchical Nanostructures: Design for Sustainable Water Splitting [J].
Fang, Ming ;
Dong, Guofa ;
Wei, Renjie ;
Ho, Johnny C. .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[8]   Hierarchically Structured Ultraporous Iridium-Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers [J].
Faustini, Marco ;
Giraud, Marion ;
Jones, Deborah ;
Roziere, Jacques ;
Dupont, Marc ;
Porter, Thomas R. ;
Nowak, Sophie ;
Bahri, Mounib ;
Ersen, Ovidiu ;
Sanchez, Clement ;
Boissiere, Cedric ;
Tard, Cedric ;
Peron, Jennifer .
ADVANCED ENERGY MATERIALS, 2019, 9 (04)
[9]   Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers [J].
Hegge, Friedemann ;
Lombeck, Florian ;
Ortiz, Edgar Cruz ;
Bohn, Luca ;
von Holst, Miriam ;
Kroschel, Matthias ;
Huebner, Jessica ;
Breitwieser, Matthias ;
Strasser, Peter ;
Vierrath, Severin .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :8276-8284
[10]   Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer [J].
Huang, Huawei ;
Kim, Hoyoung ;
Lee, Ahryeon ;
Kim, Seongbeen ;
Lim, Won-Gwang ;
Park, Cheol-Young ;
Kim, Seoa ;
Kim, Soo-Kil ;
Lee, Jinwoo .
NANO ENERGY, 2021, 88