Diagnosis of Breast Cancer Tumor Based on Manifold Learning and Support Vector Machine

被引:3
作者
Luo, Zhaohui [1 ]
Wu, Xiaoming [1 ]
Guo, Shengwen [1 ]
Ye, Binggang [1 ]
机构
[1] S China Univ Technol, Coll Biol Sci & Engn, Dept Biomed Engn, Guangzhou 510006, Guangdong, Peoples R China
来源
2008 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-4 | 2008年
关键词
D O I
10.1109/ICINFA.2008.4608089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an efficient algorithm based on manifold learning and Support Vector Machine(SVM) for the diagnosis of breast cancer tumor. First, Isomap algorithm is implemented to Project high-dimensional breast tumor data to much lower dimensional space, then the processed data are classified by the SVM. Experimental and analytical results show that in the diagnosis of breast cancer tumor the proposed method can greatly speed up the training and testing of the classifier and get high testing correct rate, superior to the classical Principal Component Analysis(PCA) algorithm.
引用
收藏
页码:703 / 707
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[3]   Manifold learning applied on EEG signal of the epileptic patients for detection of normal and pre-seizure states [J].
Ataee, P. ;
Yazdani, A. ;
Setarehdan, S. K. ;
Noubari, H. A. .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :5489-+
[4]  
BELKIN M, 2002, LAPLACIAN EIGENMAPS
[5]   Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms [J].
Listgarten, J ;
Damaraju, S ;
Poulin, B ;
Cook, L ;
Dufour, J ;
Driga, A ;
Mackey, J ;
Wishart, D ;
Greiner, R ;
Zanke, B .
CLINICAL CANCER RESEARCH, 2004, 10 (08) :2725-2737
[6]  
LWEI Y, 2005, IEEE T MED IMAGING, V24, P371
[7]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[8]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319
[9]  
STREET WN, 1993 INT S EL IM SCI, V1905, P861
[10]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+