About skew partitions in minimal imperfect graphs

被引:18
作者
Roussel, F [1 ]
Rubio, P [1 ]
机构
[1] Univ Orleans, LIFO, F-45067 Orleans 2, France
关键词
D O I
10.1006/jctb.2001.2044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
V. Chvatal conjectured in 1985 that a minimal imperfect graph G cannot have a skew cutset (i.e., a cutset S decomposable into disjoint sets A and B joined by all possible edges). We prove here the conjecture in the particular case where at least one of A and B is a stable set. (C) 2001 Academic Press.
引用
收藏
页码:171 / 190
页数:20
相关论文
共 12 条
[1]  
Berge C., 1961, Wissenchaftliche Zeitschrift, Martin Luther Univ. Halle-Wittenberg, P114
[2]   STAR-CUTSETS AND PERFECT GRAPHS [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (03) :189-199
[3]   COMPLETE MULTI-PARTITE CUTSETS IN MINIMAL IMPERFECT GRAPHS [J].
CORNUEJOLS, G ;
REED, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (02) :191-198
[4]   Finding skew partitions efficiently [J].
de Figueiredo, CMH ;
Klein, S ;
Kohayakawa, Y ;
Reed, BA .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2000, 37 (02) :505-521
[5]  
FOUQUET JL, 1996, UNPUB INT REPORT
[6]  
Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
[7]   Some properties of minimal imperfect graphs [J].
Hoang, CT .
DISCRETE MATHEMATICS, 1996, 160 (1-3) :165-175
[8]  
Lovasz L., 1972, Journal of Combinatorial Theory, Series B, V13, P95, DOI 10.1016/0095-8956(72)90045-7
[9]   A NEW PROPERTY OF CRITICAL IMPERFECT GRAPHS AND SOME CONSEQUENCES [J].
MEYNIEL, H .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (03) :313-316
[10]  
PADBERG M. W., 1974, Math. Program., V6, P180, DOI 10.1007/BF01580235