Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time

被引:10
作者
Calogero, F [1 ]
Francoise, JP [1 ]
机构
[1] UNIV ROMA LA SAPIENZA,I-00185 ROME,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 01期
关键词
D O I
10.1088/0305-4470/30/1/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Hamiltonian is explicitly exhibited, whose equations of motion yield the time evolution of the n zeros, z(j)(t), of a polynomial of degree n in z, P-n(z, t) = z(n) + Sigma(m=1)(n) c(m)(t)z(n-m), when its coefficients c(m)(t) oscillate, c(m)(t) = c(m)(+)exp(i omega(m)t) + c(m)((-))exp(-i omega(m)t), or evolve in some other Hamiltonian manner.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 3 条
[1]   MOTION OF POLES AND ZEROS OF SPECIAL SOLUTIONS OF NON-LINEAR AND LINEAR PARTIAL-DIFFERENTIAL EQUATIONS AND RELATED SOLVABLE MANY-BODY PROBLEMS [J].
CALOGERO, F .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1978, 43 (02) :177-241
[2]   A solvable N-body problem in the plane .1. [J].
Calogero, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (04) :1735-1759
[3]  
CALOGERO F, 1996, IN PRESS 3 SOLVABLE