The Pharmacokinetics and Pharmacodynamics of Pulmonary Mycobacterium avium Complex Disease Treatment

被引:159
作者
van Ingen, Jakko [1 ,2 ]
Egelund, Eric F. [6 ,7 ]
Levin, Adrah [2 ]
Totten, Sarah E. [3 ]
Boeree, Martin J. [4 ]
Mouton, Johan W. [1 ]
Aarnoutse, Rob E. [5 ]
Heifets, Leonid B. [3 ]
Peloquin, Charles A. [6 ,7 ]
Daley, Charles L. [2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Med Microbiol, NL-6500 HB Nijmegen, Netherlands
[2] Natl Jewish Hlth, Dept Mycobacteriol, Div Mycobacterial & Resp Infect, Denver, CO USA
[3] Natl Jewish Hlth, Dept Mycobacteriol, ADx Labs, Denver, CO USA
[4] Radboud Univ Nijmegen, Med Ctr, Dept Pulm Dis, NL-6500 HB Nijmegen, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, Dept Pharm, NL-6500 HB Nijmegen, Netherlands
[6] Univ Florida, Coll Pharm, Gainesville, FL USA
[7] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
关键词
Mycobacterium avium complex; pharmacokinetics; pharmacodynamics; drug resistance; bacterial; mycobacteria; atypical; NONTUBERCULOUS MYCOBACTERIA; FASTING CONDITIONS; LUNG-DISEASE; CLARITHROMYCIN; TUBERCULOSIS; ETHAMBUTOL; RIFAMPIN; INFECTION; AZITHROMYCIN; MOXIFLOXACIN;
D O I
10.1164/rccm.201204-0682OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Currently recommended multidrug treatment regimens for Mycobacterium avium complex (MAC) lung disease yield limited cure rates. This results, in part, from incomplete understanding of the pharmacokinetics and pharmacodynamics of the drugs. Objectives: To study pharmacokinetics, pharmacodynamics, and drug interactions of multidrug treatment regimens in a large cohort of patients with MAC lung disease. Methods: We retrospectively collected pharmacokinetic data of all patients treated for MAC lung disease in the Adult Care Unit at National Jewish Health, Denver, Colorado, in the January 2006 to January 2010 period; we retrospectively calculated areas under the time-concentration curve (AUC). Minimum inhibitory concentrations (MIC) of their MAC isolates were retrieved for pharmacodynamic calculations. Measurements and Main Results: We included 531 pharmacokinetic analyses, performed for 481 patients (84% females; mean age, 63 yr; mean body mass index, 21.6). Peak serum concentrations (C-max) below target range were frequent for ethambutol (48% of patients); clarithromycin (56%); and azithromycin (35%). Concurrent administration of rifampicin led to 68%, 23%, and 10% decreases in C-max of clarithromycin, azithromycin, and moxifloxacin. C-max/MIC or AUC/MIC ratios associated with bactericidal activity were seldom met; 57% of patients achieved target ratios for ethambutol, versus 42% for clarithromycin, 19% for amikacin, 18% for rifampicin, and 11% for moxifloxacin. Conclusions: Currently recommended regimens for MAC lung disease yield important pharmacologic interactions and low concentrations of key drugs including macrolides. Pharmacodynamic indices for rifampicin, clarithromycin, amikacin, and moxifloxacin are seldom met. This may partly explain the poor outcomes of currently recommended treatment regimens. Trials of new drugs and new dosing strategies are needed.
引用
收藏
页码:559 / 565
页数:7
相关论文
共 40 条
[1]   Pharmacokinetics of Rifampin and Clarithromycin in Patients Treated for Mycobacterium ulcerans Infection [J].
Alffenaar, J. W. C. ;
Nienhuis, W. A. ;
de Velde, F. ;
Zuur, A. T. ;
Wessels, A. M. A. ;
Almeida, D. ;
Grosset, J. ;
Adjei, O. ;
Uges, D. R. A. ;
van der Werf, T. S. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (09) :3878-3883
[2]   Activity of moxifloxacin by itself and in combination with ethambutol, rifabutin, and azithromycin in vitro and in vivo against Mycobacterium avium [J].
Bermudez, LE ;
Inderlied, CB ;
Kolonoski, P ;
Petrofsky, M ;
Aralar, P ;
Wu, M ;
Young, LS .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (01) :217-222
[3]   Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic Mycobacterium avium complex disease in patients with HIV infection [J].
Chaisson, RE ;
Keiser, P ;
Pierce, M ;
Fessel, WJ ;
Ruskin, J ;
Lahart, C ;
Benson, CA ;
Meek, K ;
Siepman, N ;
Craft, JC .
AIDS, 1997, 11 (03) :311-317
[4]   Effect of grapefruit juice on clarithromycin pharmacokinetics [J].
Cheng, KL ;
Nafziger, AN ;
Peloquin, CA ;
Amsden, GW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (04) :927-929
[5]  
Clinical and Laboratory Standards Institute (CLSI), 2011, M24A2 CLSI
[6]   ACTIVITIES OF WIN-57273, MINOCYCLINE, CLARITHROMYCIN, AND 14-HYDROXY-CLARITHROMYCIN AGAINST MYCOBACTERIUM-AVIUM COMPLEX IN HUMAN MACROPHAGES [J].
COHEN, Y ;
PERRONNE, C ;
TRUFFOTPERNOT, C ;
GROSSET, J ;
VILDE, JL ;
POCIDALO, JJ .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1992, 36 (10) :2104-2107
[7]   Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium [J].
Deshpande, Devyani ;
Srivastava, Shashikant ;
Meek, Claudia ;
Leff, Richard ;
Gumbo, Tawanda .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (05) :1728-1733
[8]   Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine [J].
Field, SK ;
Cowie, RL .
CHEST, 2003, 124 (04) :1482-1486
[9]   An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases [J].
Griffith, David E. ;
Aksamit, Timothy ;
Brown-Elliott, Barbara A. ;
Catanzaro, Antonino ;
Daley, Charles ;
Gordin, Fred ;
Holland, Steven M. ;
Horsburgh, Robert ;
Huitt, Gwen ;
Iademarco, Michael F. ;
Iseman, Michael ;
Olivier, Kenneth ;
Ruoss, Stephen ;
von Reyn, C. Fordham ;
Wallace, Richard J., Jr. ;
Winthrop, Kevin .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2007, 175 (04) :367-416
[10]   Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin [J].
Gumbo, Tawanda ;
Louie, Arnold ;
Deziel, Mark R. ;
Liu, Weiguo ;
Parsons, Linda M. ;
Salfinger, Max ;
Drusano, George L. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (11) :3781-3788