Differential invariants of self-dual conformal structures

被引:3
作者
Kruglikov, Boris [1 ]
Schneider, Eivind [1 ]
机构
[1] Univ Tromso, NT Fac, Inst Math & Stat, N-9037 Tromso, Norway
关键词
Differential invariants; Invariant derivations; Self-duality; Conformal metric structure; Hilbert polynomial; Poincare function;
D O I
10.1016/j.geomphys.2016.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the quotient of the self-duality equation for conformal metrics by the action of the diffeomorphism group. We also determine Hilbert polynomial, counting the number of independent scalar differential invariants depending on the jet-order, and the corresponding Poincare function. We describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action, resolving the local recognition problem for self-dual conformal structures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 187
页数:12
相关论文
共 14 条
[1]  
Alekseevskij D.V., 1991, ENCY MATH SCI, V28
[2]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[3]   ALGEBRAIC LIE ALGEBRAS [J].
CHEVALLEY, C .
ANNALS OF MATHEMATICS, 1947, 48 (01) :91-100
[4]   ON ALGEBRAIC LIE ALGEBRAS [J].
CHEVALLEY, C ;
TUAN, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1945, 31 (07) :195-196
[5]   On the Einstein-Weyl and conformal self-duality equations [J].
Dunajski, M. ;
Ferapontov, E. V. ;
Kruglikov, B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (08)
[6]  
Grossman D.A., 2000, Selecta Math. (N.S.), V6, P399
[7]  
Krasilshchik I.S., 1986, Advanced Studies in Contemporary Mathematics
[8]   Differential Invariants and Symmetry: Riemannian Metrics and Beyond [J].
Kruglikov, B. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (03) :292-297
[9]  
Kruglikov B., 2016, J GEOM PHYS
[10]  
Kruglikov B, 2008, HANDBOOK OF GLOBAL ANALYSIS, P725, DOI 10.1016/B978-044452833-9.50015-2