Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion

被引:54
|
作者
Darvishi, M. T. [1 ]
Najafi, M. [1 ]
Wazwaz, A. M. [2 ]
机构
[1] Razi Univ, Dept Math, Kermanshah 67149, Iran
[2] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
Boussinesq-like equations; Semi-inverse variational principle; Soliton solution; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; COMPACT SUPPORT; WELL-POSEDNESS; CAUCHY-PROBLEM;
D O I
10.1016/j.oceaneng.2016.11.052
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper addresses the soliton solutions for a variety of Boussinesq-like equations with spatio-temporal dispersion. The semi-inverse variational principle (SVP) is applied to obtain these solutions. The derived solutions address the dynamics of thin inviscid layers with free surface, solitons solutions, and other nonlinear phenomena. The structures of the obtained solutions were carried out and illustrated, and can provide feasible basis for studying surface water models.
引用
收藏
页码:228 / 240
页数:13
相关论文
共 50 条
  • [31] Integral approach to compacton solutions of Boussinesq-like B(m, n) equation with fully nonlinear dispersion
    Liu, ZR
    Lin, QM
    Li, QX
    CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1071 - 1081
  • [32] New families of solitons with compact support for Boussinesq-like B(m, n) equations with fully nonlinear dispersion
    Yan, ZY
    CHAOS SOLITONS & FRACTALS, 2002, 14 (08) : 1151 - 1158
  • [33] Exact solitary solutions with compact support for the nonlinear dispersive Boussinesq-like B(m, n) equations
    Zhu, YG
    Chang, QS
    Wu, SC
    CHAOS SOLITONS & FRACTALS, 2005, 26 (02) : 407 - 413
  • [34] New solitary solutions with compact support for Boussinesq-like B(2n, 2n) equations with fully nonlinear dispersion
    Zhu, Yonggui
    Lu, Chao
    CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 768 - 772
  • [35] Multiple soliton solutions for the variant Boussinesq equations
    Peng Guo
    Xiang Wu
    Liang-bi Wang
    Advances in Difference Equations, 2015
  • [36] On soliton solutions for Boussinesq-Burgers equations
    Rady, A. S. Abdel
    Khalfallah, Mohammed
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 886 - 894
  • [37] Multiple soliton solutions for the variant Boussinesq equations
    Guo, Peng
    Wu, Xiang
    Wang, Liang-bi
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [38] Chirped soliton solutions of Fokas–Lenells equation with perturbation terms and the effect of spatio-temporal dispersion in the modulational instability analysis
    Gawarai Dieu-donne
    Malwe Boudoue Hubert
    Aly Seadawy
    Temwa Etienne
    Gambo Betchewe
    Serge Y. Doka
    The European Physical Journal Plus, 135
  • [39] Optical soliton perturbation with spatio-temporal dispersion using modified simple equation method
    Arnous, Ahmed H.
    Ullah, Malik Zaka
    Asma, Mir
    Moshokoa, Seithuti P.
    Zhou, Qin
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Biswas, Anjan
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2018, 20 (3-4): : 118 - 125
  • [40] Nonlinear Schrodinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov's algorithm and soliton solutions
    Yildirim, Yakup
    Celik, Nisa
    Yasar, Emrullah
    RESULTS IN PHYSICS, 2017, 7 : 3116 - 3123