Automatic Indonesian Image Caption Generation using CNN-LSTM Model and FEEH-ID Dataset

被引:0
作者
Mulyanto, Edy [1 ]
Setiawan, Esther Irawati [2 ]
Yuniarno, Eko Mulyanto [3 ]
Purnomo, Mauridhi Hery [3 ]
机构
[1] Univ Dian Nuswantoro, Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Informat Engn, Surabaya, Indonesia
[2] Sekolah Tinggi Tekn Surabaya, Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Informat Engn, Surabaya, Indonesia
[3] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Comp Engn, Surabaya, Indonesia
来源
2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019) | 2019年
关键词
image captioning; CNN; LSTM; FEEH-ID;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image captioning is a challenge in computer vision research. This paper extends research on automatic image captioning generation in the Indonesian dimension. Description in Indonesian sentences is generated for unlabeled images. The dataset used is FEEH-ID, this is the first Indonesian image captioning dataset. This research is crucial due to unavailability of a corpus for image captioning in Indonesian. This paper will compare the experimental results in the FEEH-ID dataset with English, Chinese and Japanese datasets using the CNN and LSTM models. The performance of the model proposed in the test set provides promising results of 50.0 for the BLEU-1 score and 23.9 for BLEU-3, which is above average of the Bleu evaluation results in other language datasets. The merging model between CNN and LSTM displays pretty good results for the FEEH-ID dataset. The experimental results will he better with a larger dataset.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 21 条
  • [1] Al-muzaini H. A., 2018, INT J ADV COMPUTER S, V9
  • [2] Denkowski M, 2014, P 9 WORKSH STAT MACH, P376
  • [3] Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
    Donahue, Jeff
    Hendricks, Lisa Anne
    Rohrbach, Marcus
    Venugopalan, Subhashini
    Guadarrama, Sergio
    Saenko, Kate
    Darrell, Trevor
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) : 677 - 691
  • [4] Elliott D., 2013, P 2013 C EMP METH NA, P1292
  • [5] Hihn J, 2016, AEROSP CONF PROC
  • [6] Jingna Mao, 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), P1, DOI 10.1109/BioCAS.2015.7348279
  • [7] Karpathy A, 2015, PROC CVPR IEEE, P3128, DOI 10.1109/CVPR.2015.7298932
  • [8] A Hierarchical Approach for Generating Descriptive Image Paragraphs
    Krause, Jonathan
    Johnson, Justin
    Krishna, Ranjay
    Li Fei-Fei
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3337 - 3345
  • [9] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [10] Li Xirong, 2016, ADDING CHINESE CAPTI