Facile flame synthesis and electrochemical properties of carbon nanocoils

被引:30
作者
Wang, Lanjuan [1 ,2 ]
Li, Chunzhong [1 ]
Gu, Feng [1 ]
Zhang, Chuanxiang [3 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
[2] China Univ Petr, Coll Chem & Chem Engn, Dongying 257061, Peoples R China
[3] E China Univ Sci & Technol, UNILAB, Chem React Engn State Key Lab, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Fullerenes; Crystal growth; Gas-solid reactions; Scanning and transmission electron microscopy; Anisotropy; CONTROLLABLE SYNTHESIS; GROWTH-MECHANISM; ELECTRODE; PYROLYSIS; NANOTUBES; ACETYLENE; STORAGE; MICROSTRUCTURE; FIBERS; ENERGY;
D O I
10.1016/j.jallcom.2008.05.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanocoils (CNCs) were in situ synthesized by using tin oxide nanoparticle catalyst from stannic chloride precursor in an ethanol flame. The anisotropic deposition rate of carbon among tin dioxide crystal planes provides the driving force for the coiling of carbon fibers. The obtained CNCs have tight coil pitches and average fiber and coil diameter of approximately 50-80 nm and 80-100 nm, respectively. BET measurement and BJH method reveal that the CNCs possess a mesoporous character. The CNCs present excellent specific capacitance as ca. 40 F/g using as polarized electrodes, which is considerably higher than that of the micro-coiled carbon fibers or carbon nanofibers, maybe the ideal candidate using as supercapacitor. (C) 2008 Published by Elsevier B.V.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 33 条
[1]   A FORMATION MECHANISM FOR CATALYTICALLY GROWN HELIX-SHAPED GRAPHITE NANOTUBES [J].
AMELINCKX, S ;
ZHANG, XB ;
BERNAERTS, D ;
ZHANG, XF ;
IVANOV, V ;
NAGY, JB .
SCIENCE, 1994, 265 (5172) :635-639
[2]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[3]  
2-H
[4]   A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends [J].
Béguin, F ;
Szostak, K ;
Lota, G ;
Frackowiak, E .
ADVANCED MATERIALS, 2005, 17 (19) :2380-+
[5]   Tactile microsensor elements prepared from arrayed superelastic carbon microcoils [J].
Chen, XQ ;
Yang, S ;
Hasegawa, M ;
Kawabe, K ;
Motojima, S .
APPLIED PHYSICS LETTERS, 2005, 87 (05)
[6]   Three-dimensional vapor growth mechanism of carbon microcoils [J].
Chen, XQ ;
Saito, T ;
Kusunoki, M ;
Motojima, S .
JOURNAL OF MATERIALS RESEARCH, 1999, 14 (11) :4329-4336
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69
[9]   Templated mesoporous carbons for supercapacitor application [J].
Fuertes, AB ;
Lota, G ;
Centeno, TA ;
Frackowiak, E .
ELECTROCHIMICA ACTA, 2005, 50 (14) :2799-2805
[10]   Flame synthesis of single-walled carbon nanotubes [J].
Height, MJ ;
Howard, JB ;
Tester, JW ;
Sande, JBV .
CARBON, 2004, 42 (11) :2295-2307