Multi-Habitat Radiomics Unravels Distinct Phenotypic Subtypes of Glioblastoma with Clinical and Genomic Significance

被引:29
作者
Choi, Seung Won [1 ]
Cho, Hwan-Ho [2 ,3 ]
Koo, Harim [4 ]
Cho, Kyung Rae [1 ]
Nenning, Karl-Heinz [5 ]
Langs, Georg [5 ]
Furtner, Julia [6 ]
Baumann, Bernhard [7 ]
Woehrer, Adelheid [8 ]
Cho, Hee Jin [9 ]
Sa, Jason K. [10 ]
Kong, Doo-Sik [1 ]
Seol, Ho Jun [1 ]
Lee, Jung-Il [1 ]
Nam, Do-Hyun [1 ]
Park, Hyunjin [3 ,11 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurosurg, Seoul 06351, South Korea
[2] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
[3] Inst Basic Sci IBS, Ctr Neurosci Imaging Res, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Hlth Sci & Technol, Seoul 06351, South Korea
[5] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Computat Imaging Res Lab, A-1090 Vienna, Austria
[6] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, A-1090 Vienna, Austria
[7] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria
[8] Med Univ Vienna, Div Neuropathol & Neurochem, Dept Neurol, A-1090 Vienna, Austria
[9] Samsung Med Ctr, Res Inst Future Med, Seoul 06351, South Korea
[10] Korea Univ, Coll Med, Dept Biomed Sci, Seoul 02841, South Korea
[11] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon 16419, South Korea
关键词
glioblastoma; radiomics; biomarker; radiogenomics; SURVIVAL; HETEROGENEITY; STRATIFICATION; IDENTIFICATION; TEMOZOLOMIDE; CHLOROQUINE; EVOLUTION; DISCOVERY; AUTOPHAGY; FEATURES;
D O I
10.3390/cancers12071707
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We aimed to evaluate the potential of radiomics as an imaging biomarker for glioblastoma (GBM) patients and explore the molecular rationale behind radiomics using a radio-genomics approach. A total of 144 primary GBM patients were included in this study (training cohort). Using multi-parametric MR images, radiomics features were extracted from multi-habitats of the tumor. We applied Cox-LASSO algorithm to build a survival prediction model, which we validated using an independent validation cohort. GBM patients were consensus clustered to reveal inherent phenotypic subtypes. GBM patients were successfully stratified by the radiomics risk score, a weighted sum of radiomics features, corroborating the potential of radiomics as a prognostic biomarker. Using consensus clustering, we identified three distinct subtypes which significantly differed in the prognosis ("heterogenous enhancing", "rim-enhancing necrotic", and "cystic" subtypes). Transcriptomic traits enriched in individual subtypes were in accordance with imaging phenotypes summarized by radiomics. For example, rim-enhancing necrotic subtype was well described by radiomics profiling (T2 autocorrelation and flat shape) and highlighted by the inflammatory genomic signatures, which well correlated to its phenotypic peculiarity (necrosis). This study showed that imaging subtypes derived from radiomics successfully recapitulated the genomic underpinnings of GBMs and thereby confirmed the feasibility of radiomics as an imaging biomarker for GBM patients with comprehensible biologic annotation.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 54 条
[41]   Pathological and clinical features of cystic and noncystic glioblastomas [J].
Utsuki, Satoshi ;
Oka, Hidehiro ;
Suzuki, Sachio ;
Shimizu, Satoru ;
Tanizaki, Yoshinori ;
Kondo, Koji ;
Tanaka, Satoshi ;
Kawano, Nobuyuki ;
Fujii, Kiyotaka .
BRAIN TUMOR PATHOLOGY, 2006, 23 (01) :29-34
[42]   Pharmacologic agents targeting autophagy [J].
Valcifahmetoglu-Norberg, Helin ;
Xia, Hong-guang ;
Yuan, Junying .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (01) :5-13
[43]   Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas [J].
van den Bent, M. J. ;
Wefel, J. S. ;
Schiff, D. ;
Taphoorn, M. J. B. ;
Jaeckle, K. ;
Junck, L. ;
Armstrong, T. ;
Choucair, A. ;
Waldman, A. D. ;
Gorlia, T. ;
Chamberlain, M. ;
Baumert, B. G. ;
Vogelbaum, M. A. ;
Macdonald, D. R. ;
Reardon, D. A. ;
Wen, P. Y. ;
Chang, S. M. ;
Jacobs, A. H. .
LANCET ONCOLOGY, 2011, 12 (06) :583-593
[44]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[45]   Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1 [J].
Verhaak, Roel G. W. ;
Hoadley, Katherine A. ;
Purdom, Elizabeth ;
Wang, Victoria ;
Qi, Yuan ;
Wilkerson, Matthew D. ;
Miller, C. Ryan ;
Ding, Li ;
Golub, Todd ;
Mesirov, Jill P. ;
Alexe, Gabriele ;
Lawrence, Michael ;
O'Kelly, Michael ;
Tamayo, Pablo ;
Weir, Barbara A. ;
Gabriel, Stacey ;
Winckler, Wendy ;
Gupta, Supriya ;
Jakkula, Lakshmi ;
Feiler, Heidi S. ;
Hodgson, J. Graeme ;
James, C. David ;
Sarkaria, Jann N. ;
Brennan, Cameron ;
Kahn, Ari ;
Spellman, Paul T. ;
Wilson, Richard K. ;
Speed, Terence P. ;
Gray, Joe W. ;
Meyerson, Matthew ;
Getz, Gad ;
Perou, Charles M. ;
Hayes, D. Neil .
CANCER CELL, 2010, 17 (01) :98-110
[46]   Programmed necrosis in inflammation: Toward identification of the effector molecules [J].
Wallach, David ;
Kang, Tae-Bong ;
Dillon, Christopher P. ;
Green, Douglas R. .
SCIENCE, 2016, 352 (6281)
[47]   DEGseq: an R package for identifying differentially expressed genes from RNA-seq data [J].
Wang, Likun ;
Feng, Zhixing ;
Wang, Xi ;
Wang, Xiaowo ;
Zhang, Xuegong .
BIOINFORMATICS, 2010, 26 (01) :136-138
[48]  
Wang QH, 2017, CANCER CELL, V32, P42, DOI [10.1016/j.ccell.2017.12.012, 10.1016/j.ccell.2017.06.003]
[49]   The role for autophagy in cancer [J].
White, Eileen .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (01) :42-46
[50]   Fast and SNP-tolerant detection of complex variants and splicing in short reads [J].
Wu, Thomas D. ;
Nacu, Serban .
BIOINFORMATICS, 2010, 26 (07) :873-881