Bounds for the entries of matrix functions with applications to preconditioning

被引:98
作者
Benzi, M
Golub, GH
机构
[1] Univ Calif Los Alamos Natl Lab, Sci Comp Grp, Los Alamos, NM 87545 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
BIT | 1999年 / 39卷 / 03期
基金
美国国家科学基金会;
关键词
matrix functions; quadrature rules; Lanczos process; band matrices; exponential decay; preconditioned conjugate gradients;
D O I
10.1023/A:1022362401426
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let A be a symmetric matrix and let f be a smooth function defined on an interval containing the spectrum of A. Generalizing a well-known result of Demko, Moss and Smith on the decay of the inverse we show that when A is banded, the entries of f(A) are bounded in an exponentially decaying manner away from the main diagonal. Bounds obtained by representing the entries of f(A) in terms of Riemann-Stieltjes integrals and by approximating such integrals by Gaussian quadrature rules are also considered. Applications of these bounds to preconditioning are suggested and illustrated by a few numerical examples.
引用
收藏
页码:417 / 438
页数:22
相关论文
共 40 条
[1]   ON APPROXIMATE FACTORIZATION METHODS FOR BLOCK MATRICES SUITABLE FOR VECTOR AND PARALLEL PROCESSORS [J].
AXELSSON, O ;
POLMAN, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 77 :3-26
[2]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[3]  
Bai M., 1996, Annals of Numerical Mathematics, V4, P29
[4]   Some large-scale matrix computation problems [J].
Bai, ZJ ;
Fahey, M ;
Golub, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) :71-89
[5]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[6]  
BENZI M, 1998, SCCM9804 STANF U
[7]  
Bernstein S., 1926, Lecons sur les proprietes extremales et la meilleure approximation des fonctions analytiques d'une variable reelle
[8]  
CASTILLO P, 1997, 97142 UMSI
[9]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[10]  
Chan T., 1998, SIAM J SCI STAT COMP, V9, P766