Fast Deep Asymmetric Hashing for Image Retrieval

被引:0
作者
Lin, Chuangquan [1 ]
Lai, Zhihui [1 ,2 ]
Lu, Jianglin [1 ]
Zhou, Jie [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Comp Vis Inst, Shenzhen 518060, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
来源
PATTERN RECOGNITION, ACPR 2021, PT II | 2022年 / 13189卷
关键词
Image retrieval; Asymmetric hashing; Deep learning;
D O I
10.1007/978-3-031-02444-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, by exploiting asymmetric learning mechanism, asymmetric hashing methods achieve superior performance in image retrieval. However, due to the discrete binary constraint, these methods typically rely on a special optimization strategy of discrete cyclic coordinate descent (DCC), which is time-consuming since it must learn the binary codes bit by bit. To address this problem, we propose a novel deep supervised hashing method called Fast Deep Asymmetric Hashing (FDAH), which learns the binary codes of training and query sets in an asymmetric way. FDAH designs a novel asymmetric hash learning framework using the inner product of the output of deep network and semantic label regression to approximate the similarity and minimize the discriminant reconstruction error between the deep representation and the binary codes. Instead of using the DCC optimization strategy, FDAH avoids using the quadratic term of binary variables and the binary code of all bits can be optimized simultaneously in one step. Moreover, by incorporating the semantic information in binary code learning and the quantization process, FDAH can obtain more discriminative and efficient binary codes. Extensive experiments on three well-known datasets show that the proposed FDAH can achieve state-of-the-art performance with less training time.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 50 条
  • [41] Deep hashing with mutual information: A comprehensive strategy for image retrieval
    Chen, Yinqi
    Lu, Zhiyi
    Zheng, Yangting
    Li, Peiwen
    Luo, Weijian
    Kang, Shuo
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [42] DEEP LEARNING BASED SUPERVISED HASHING FOR EFFICIENT IMAGE RETRIEVAL
    Viet-Anh Nguyen
    Do, Minh N.
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [43] Deep asymmetric compression Hashing algorithm
    Yan J.
    Cao Y.
    Ren J.
    Chen D.
    Li X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 212 - 221
  • [44] Dual enhanced semantic hashing for fast image retrieval
    Fang, Sizhi
    Wu, Gengshen
    Liu, Yi
    Feng, Xia
    Kong, Yinghui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (25) : 67083 - 67102
  • [45] An improved deep hashing model for image retrieval with binary code similarities
    Liu, Huawen
    Wu, Zongda
    Yin, Minghao
    Yu, Donghua
    Zhu, Xinzhong
    Lou, Jungang
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [46] Image Retrieval for Local Architectural Heritage Recommendation Based on Deep Hashing
    Ma, Kai
    Wang, Bowen
    Li, Yunqin
    Zhang, Jiaxin
    BUILDINGS, 2022, 12 (06)
  • [47] Deep Supervised Hashing Image Retrieval Method Based on Swin Transformer
    Miao Z.
    Zhao X.
    Li Y.
    Wang J.
    Zhang R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (08): : 62 - 71
  • [48] Deep Multi-Label Hashing for Image Retrieval
    Zhong, Xian
    Li, Jiachen
    Huang, Wenxin
    Xie, Liang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1245 - 1251
  • [49] Deep Top Similarity Preserving Hashing for Image Retrieval
    Li, Qiang
    Fu, Haiyan
    Kong, Xiangwei
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 206 - 215
  • [50] Deep Self-Adaptive Hashing for Image Retrieval
    Lin, Qinghong
    Chen, Xiaojun
    Zhang, Qin
    Tian, Shangxuan
    Chen, Yudong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1028 - 1037